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Attractiveness function and evolution
equations

Evolution equations

ṗi = u(ui
u − pi)

where u :=
∑K

j=1 uj , i = 1, 2, . . . ,K .

Attractiveness function

ui(t) = p1−α
i ν1−β

i i = 1, . . . ,K ,

where (α, β) ∈ [0, 1]× [0, 1].
For α = 1, ui(pi = 0) = 0, i = 1, 2.

Sensitivity parameter

s =
1− β
α

, α 6= 0



Game with two strategies

K = 2
C D

C R S
D T P

where R,S,T ,P ≥ 0.

Evolution equation

ṗ1 = p1−α
1 ν1−β

1 − p1[p1−α
1 ν1−β

1 + (1− p1)1−αν1−β
2 ]

where ν1 and ν2 are average payoffs:

ν1 = Rp1 + Sp2 = Rp1 + S(1− p1) = (R − S)p1 + S
ν2 = Tp1 + Pp2 = (T − P)p1 + P



Game with three strategies
(Rock-Paper-Scissors)

K = 3
R P S

R 1 L V
P V 1 L
S L V 1

We assume that V > 1 > L ≥ 0, where V , L – payoffs for victory
and loss respectively.

Evolution equations

ṗ1 =p1−α
1 ν1−β

1 − p1[p1−α
1 ν1−β

1 + p1−α
2 ν1−β

2 +

+ (1− p1 − p2)1−αν1−β
3 ]

ṗ2 =p1−α
2 ν1−β

2 − p2[p1−α
1 ν1−β

1 + p1−α
2 ν1−β

2 +

+ (1− p1 − p2)1−αν1−β
3 ]



Rock-Paper-Scissors

Figure: The trajectories of solutions to the evolution equations for a
Rock-Paper-Scissors game with V = 1.4, L = 0 and α = 0.025,
β = 0.825.



Modifications of the attractiveness function

General attractiveness function

ui = p1−α
i ν1−β

i f 1−β
i (1+ ki

dpi
dt )(1+ livi)γ

where fi , ki , li , γ ∈ R+ are constant,
vi =

D2
i

ν2
i
and D2

i is the variance of payoffs, i = 1, . . . ,K .

1 transcendent factor f 1−β
i

2 rate factor (1+ ki dpidt )

3 selection potential (1+ livi)γ

Nonconformist preferences

ui = (1− pi)1−αν1−β
i



Iterated Prisoner’s Dilemma

Figure: The trajectories of solutions to the evolution equations for an
Iterated Prisoner’s Dilemma with f1 = 1, α = β = 0.1,
[R, S,T ,P] = [2, 0, 3, 1], m = 10, f2 = f3 = 1, p1(0) = p2(0) = 0.1.



Iterated Prisoner’s Dilemma

Figure: The trajectories of solutions to the evolution equations for an
Iterated Prisoner’s Dilemma with f1 = 1.6, α = β = 0.1,
[R,S,T ,P] = [2, 0, 3, 1], m = 10, f2 = f3 = 1, p1(0) = p2(0) = 0.1.



Iterated Prisoner’s Dilemma

Figure: The trajectories of solutions to the evolution equations for an
Iterated Prisoner’s Dilemma with f1 = 1.75, α = β = 0.1,
[R, S,T ,P] = [2, 0, 3, 1], m = 10, f2 = f3 = 1, p1(0) = p2(0) = 0.1.



Iterated Prisoner’s Dilemma

Figure: The trajectories of solutions to the evolution equations for an
Iterated Prisoner’s Dilemma with f1 = 1.75, α = β = 0.1,
[R, S,T ,P] = [2, 0, 3, 1], m = 10, f2 = f3 = 1, p1(0) = p2(0) = 0.1.



Iterated Prisoner’s Dilemma

Figure: The trajectories of solutions to the evolution equations for an
Iterated Prisoner’s Dilemma with f1 = 1.9, α = β = 0.1,
[R,S,T ,P] = [2, 0, 3, 1], m = 10, f2 = f3 = 1, p1(0) = p2(0) = 0.1.



Games with delay

Delays can be added to:
payoffs

ui(t) = (pi(t))1−α(νi(t − τ))1−β

popularity

ui(t) = (pi(t − τ))1−α(νi(t))1−β

both popularity and payoffs

ui(t) = (pi(t − τ1))1−α(νi(t − τ2))1−β



Snow-drift game

Figure: The trajectories of solutions to the evolution equation for a
Snow-Drift game with τ = 4, [R,S,T ,P] = [2, 1, 3, 0], α = 0.02,
β = 0.2.



Snow-drift game

Figure: The trajectories of solutions to the evolution equation for a
Snow-Drift game with τ = 5, [R,S,T ,P] = [2, 1, 3, 0], α = 0.02,
β = 0.2.



Snow-drift game

Figure: The trajectories of solutions to the evolution equation for a
Snow-Drift game with τ = 5, [R,S,T ,P] = [2, 1, 3, 0], α = 0.1, β = 0.2.



Snow-drift game

Figure: The trajectories of solutions to the evolution equation for a
Snow-Drift game with τ = 6, [R,S,T ,P] = [2, 1, 3, 0], α = 0.1, β = 0.2.



Relation between sensitivity, delays and
oscillations

Figure: Graph presenting the relation between values of sensitivity and
delays and the oscillatory behaviour of trajectories of solution to the
evolution equations with attractiveness function delayed in payoffs for the
Snow Drift game with payoff matrix [R, S,T ,P] = [2, 1, 3, 0]. Green
points denote damping oscillations and the red ones denote constant
oscillations.



Rock-Paper-Scissors

Figure: The trajectories of solutions to the evolution equations for a
Rock-Paper-Scissors game with τ = 0.8, α = 0.2, β = 0.2, V = 2, L = 0,
p1(0) = 0.5, p2(0) = 0.2.



Rock-Paper-Scissors

Figure: The trajectories of solutions to the evolution equations for a
Rock-Paper-Scissors game with τ = 0.9, α = 0.2, β = 0.2, V = 2, L = 0,
p1(0) = 0.5, p2(0) = 0.2.



Rock-Paper-Scissors

Figure: The trajectories of solutions to the evolution equations for a
Rock-Paper-Scissors game with τ = 2, α = 0.2, β = 0.2, V = 2, L = 0,
p1(0) = 0.5, p2(0) = 0.2.



Asymmetric games

A B
A (a1, a2) (b1, b2)
B (c1, c2) (d1, d2)

where ai , bi , ci , di > 0, i = 1, 2.

Attractiveness function

ui
A = x1−αi

i ν1−βi
Ai

ui
B = (1− xi)1−αiν1−βi

Bi

Evolution equations ẋ1 = (1− x1)x1−α1
1 ν1−β1

A1
− x1(1− x1)1−α1ν1−β1

B1

ẋ2 = (1− x2)x1−α2
2 ν1−β2

A2
− x2(1− x2)1−α2ν1−β2

B2

where νji is the mean payoff from strategy j in population i .
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