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Streszczenie

Population games in systems of agents with attractiveness-driven strategy choice are studied.
The attractiveness of the strategy depends on the payoff as well as on the actual popularity
in the population. Two-person symmetric games with two strategies as well as games with
three strategies are investigated. The attractiveness function is modified by adding additional
factors: transcendent factor, rate factor and selection potential. A concept of nonconformist
preferences in two-person games with two strategies is introduced. The situation, when
agents receive information about the state of the system with delay is also investigated. The
dynamical systems describing chosen models, their asymptotic behaviour in time and stability
of equilibrium solutions are analyzed. Numerical calculations and plots were performed using
Matlab, Octave and Mathematica numerical environments.

Słowa kluczowe

delay differential equations, dynamic systems, population games, social dilemmas, strategic
games

Dziedzina pracy (kody wg programu Socrates-Erasmus)

11.1 Matematyka

Klasyfikacja tematyczna

91 Game theory, economics, social and behavioral sciences
91A Game theory
91A22 Evolutionary games

Tytuł pracy w języku polskim

Gry populacyjne z wyborem strategii określonym przy użyciu funkcji atrakcyjności z uwzględ-
nieniem opóźnienia czasowego





Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1. Population games with attractiveness function . . . . . . . . . . . . . . . . . 7
1.1. Attractiveness function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2. Balance conservation equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Two-person symmetric games with two strategies . . . . . . . . . . . . . . . 11
2.1. General model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2. Prisoner’s Dilemma game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3. Coordination and anti-coordination games . . . . . . . . . . . . . . . . . . . . 14

3. Two-person symmetric games with three strategies . . . . . . . . . . . . . . 15
3.1. General model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2. Rock-Paper-Scissors game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4. Modifications of the attractiveness function . . . . . . . . . . . . . . . . . . 21
4.1. General attractiveness function . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2. Transcendent factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3. Rate factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4. Selection potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5. Nonconformist preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5. Games with delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1. Attractiveness function with delay . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2. Two-person symmetric games with two strategies . . . . . . . . . . . . . . . . 36
5.3. Rock-Paper-Scissors game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6. Two-person asymmetric games with two strategies . . . . . . . . . . . . . . 43
6.1. General model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2. Nonconformist preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3





Introduction

Game theory is a popular and effective tool that enables us to model different types of
interactions in diverse scientific branches e.g. biology, social sciences or economics. The evo-
lutionary games formalism is an important mathematical instrument developed by biologists
and used to predict population dynamics. Evolutionary games provide a simple framework for
describing strategic interactions among large number of players and the evolution of strategies
in time. There are many evolutionary game dynamics models used, for instance, replicator
dynamics or best response dynamics. Replicator dynamics is one of the most studied evolu-
tionary game dynamics. In replicator dynamics, share of a strategy in a population grows at
a rate equal to the difference between the payoff of that strategy and the mean payoff of the
population.

Over recent years, a few research activities that use game theory to model various social
interactions were conducted. Evolutionary game theory has found several applications to
explain the long-term behaviour of systems and the understanding of learning and evolution
processes. There are numerous examples where game theory provides deeper understanding
of complex social dynamics and still a bigger number of interesting problems to be explored.
However, in the most common models too strong assumptions concerning the behaviour of
individuals, their motivations and regular mechanisms are usually adopted, like the full ratio-
nality of players. It may lead to the results that are contradictory with real and experimental
situations.

Nowadays, one of the main aims in the field of modelling interactions using game theory
tools is an attempt to find more general models that could better describe the real behaviour
of individuals. One of such generalizations of the replicator model was introduced in [1]. The
authors proposed replacement of the standard rule of proportional fitness of strategy mea-
sured by the payoff from interaction by the more general function called the attractiveness
function. The attractiveness of the strategy depends on the payoff as well as on the actual
popularity in the population. The parameters of the attractiveness function reflect the dif-
ferent psychological types of agents and refer to the sociological classification introduced by
German sociologist Max Weber. Of course, such a simple model still cannot describe social
interactions with full precision, however, it can capture more key features of them than the
replicator model.

The main objective of this thesis is to study social interactions in large populations us-
ing evolutionary game theory tools. I study specific evolution equations that include the
attractiveness function mentioned above. I also examine numerically the effect of time delays
introduced to the evolution equations on the convergence of solutions to the stationary point.
Numerical calculations and plots were performed using Matlab, Octave and Mathematica
numerical environments. Below, there is a short summary of the thesis.

Chapter 1 contains a brief introduction and formulation of the model (based on [2]). In
the next chapters, I consider two-person symmetric games with two strategies as well as
games with three strategies. The relevant evolutionary equations are given, existence and
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stability of their solutions are studied.
In Chapter 4, I propose modifications of the attractiveness function. It is possible to take

into account not only popularity and payoffs from the strategy, but also some other factors.
I study the influence on dynamics of transcendent factor, rate of change in popularity of
a strategy or so called selection potential that is based on the variance of payoffs. I also
consider a concept of nonconformist preferences in two-person games with two strategies. I
prove a theorem stating that there exists a unique mixed equilibrium in such case.

It is very likely that decisions may be made by agents who receive a delayed information
about some global characteristics of the system. Chapter 5 presents evolutionary games with
delays introduced in the attractiveness function. The delays may be added in popularity of the
strategy, payoffs or in both of these factors. I check numerically how delay (sometimes called
information lag) influences the dynamics. Limit cycles, damped oscillations or a significant
decrease in rate of reaching an equilibrium level can be observed for some particular values
of the parameters.

Chapter 6 focuses on two-person asymmetric games with two strategies. Criteria excluding
existence of a periodic orbit (Bendixson’s and Dulac’s criteria, recalled in Appendix A.3) are
used to show that there are no periodic solutions for such model. A two-person asymmetric
game with nonconformist preferences is also considered and the similar result is obtained.

The last chapter includes final conclusions. I sum up the main ideas presented in the
thesis and formulate open questions that may become a topic for further work in this field.

My contribution to the thesis are Chapter 4 (presenting modifications of the attractiveness
function), Chapter 5 (including numerical investigation of delay evolution equations) and a
section concerning nonconformist games in Chapter 6. I have also written the relevant code
in Matlab, Octave and Mathematica and performed a lot of varied simulations of two-person
symmetric games with two and three strategies. Numerical results presenting trajectories of
solutions to non-delay as well as delayed evolutionary equations are included.

I am very grateful to my thesis advisor, prof. Tadeusz Płatkowski, for his support,
guidance and helpful suggestions throughout writing the thesis.
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Chapter 1

Population games with
attractiveness function

This chapter provides an introduction to the evolutionary games played in populations of
individuals with complex personality profiles. It is based mostly on [2], [3], [7].

Let us consider an infinite, homogeneous population of individuals (agents). Competition
between individuals occurs at each instant of time through pairwise interactions between
randomly selected individuals. Each member of the population has the same finite set A of
available pure strategies (actions). We use the following notation:

• By ∆(A) we will denote the (|A| − 1)-dimensional simplex of R|A|. K = |A| is the
number of available strategies.

• Ni(t) is the number of individuals playing strategy i, i = 1, . . . ,K. Size N of the
population is constant, N = N1 +N2 + . . .+NK .

• By p(t) we will denote the K-dimensional vector whose element pi = pi(t) is the fre-
quency of the strategy i (popularity) in the population i.e. pi = Ni

N , i = 1, 2, . . . ,K.
p(t) is interpreted as a mixed strategy used by all players at time t. Player chooses
at time t an action i with probability pi(t). Vector p(t) is also called the state of the
population at time t. pi(t) is the frequency, so

∑
i∈A pi(t) = 1 and pi(t) ≥ 0.

• By νi(t) we will denote the expected payoff of an agent playing action i at time t, when
the population profile equals p(t), i = 1, . . . ,K.

Game theory models of social interactions are often formulated for the general case with
n strategies. However, examples usually limit to simple types of games, in which there are
two, three or sometimes four actions available.

1.1. Attractiveness function
Many social and biological interactions are based on the process of imitation, where

individuals more willingly adopt strategies that are more popular and that probably bring
more successes. Therefore, it seems natural to take the popularity of a strategy into account,
apart from payoffs.
Let us introduce the attractiveness function ui(t) at time t

ui(t) = p1−α
i ν1−β

i (1.1)
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where (α, β) ∈ [0, 1]× [0, 1], i = 1, . . . ,K.
The formula (1.1) states that the attractiveness of the strategy i depends on the payoff

νi (precisely on the mean payoff of the strategy i) as well as on the popularity pi of this
strategy in the population. When pi ∈ (0, 1), the greater α is, the more influence on the
attractiveness of the strategy i the popularity has. The situation is similar for β and νi,
if all of the payoffs are between 0 and 1. Namely, the greater the value of β is, the more
influence on the attractiveness of the strategy i the payoffs have. However, if all payoffs are
greater than 1, then with increasing value of β the effect of payoffs on the attractiveness of
the strategy i is weaker.

The attractiveness function has been chosen in such a form, because it has numerous
important features (that are mentioned in bold) and is well suited to our intuition. The more
attractive strategies have an evolutionary advantage in the considered social systems.

The attractiveness function is an increasing and concave function of popularity and
payoffs of a strategy. Moreover, we get the nonlinear dependence of the attractiveness function
on these factors (provided that α, β 6= 1). The concavity reflects the fact that with increasing
attractiveness, the changes are slower. We assume that the attractiveness of a strategy equals
zero, if its popularity in the population equals zero.

Moreover, the function (1.1) is the well-known Cobb-Douglas utility function. It is
widely used in economical problems since it accurately reflects the relation between output
and inputs. Parameters α and β describe the reaction of the function ui on the actual value
of popularity and payoffs from the action i. If α + β = 1, we say that the attractiveness
function has constant returns to scale e.g. doubling popularity and payoffs of the strategy
will also double its attractiveness. If α + β < 1, then returns to scale are decreasing, and if
α+ β > 1, then returns to scale are increasing.

Parameters α and β are also connected with diverse types of individuals since the attrac-
tiveness function can be explained in term of a specific behaviour. Below, we define pure
ideal types of individuals personality profiles and shortly characterize their behaviour
depending on values of α and β. The descriptions are based on the intuitions of German
sociologist Max Weber (see [2]).

• Homo Sociologicus: α = 0, β = 1
This individual assesses the attractiveness of the strategy only based on the popularity
and he is insensitive to the payoffs of the game (ui = pi). The information about higher
popularity is for him an evidence of success of agents that used this strategy in the
past. He imitates the behaviour of the majority.

• Homo Economicus: α = 1, β = 0
This player assesses the attractiveness of the strategy only based on its effectiveness
(ui = νi). He does not care about popularity of the strategy.

• Homo Afectualis: α = β = 0
This individual is maximally sensitive and flexible to changes of factors pi and νi (ui =
νipi). Dependence of the attractiveness function on popularity and payoffs is linear.
The proper evolutionary equation reduces to the standard replicator equation, this is
shown in Section 1.2.

• Homo Transcendentalis: α = β = 1
Each of actions has the same attractiveness for this player (ui = 1). He is not interested
in effectiveness or popularity of his behaviour and he is insensitive to theirs changes.
He takes into account some other values e.g. aesthetic, ethical issues. Conscience or
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other rules are more important for him, he does not reckon with popularity and payoffs
from the strategy. He is maximally insensitive and inflexible to the changes of factors
pi and νi.

All of the remaining values of parameters α and β reflect the transitive types of personal-
ities. It is very likely that parameters α and β are specific for different types of activity and
may change during the life of individual. Their values may depend on social roles or status of
the agent as well as on the demographic or cultural characteristics. It may be worth to focus
on the ”central” model, where α = β = 1

2 , from which individuals may deviate to extreme
homotypes described above.

1.2. Balance conservation equation

As an alternative to the equilibrium approach, evolutionary game dynamics propose a
dynamic updating choice of the strategies. Players myopically update their behaviour in re-
sponse to the current situation in the population. Strategies that give players higher payoffs
and that are more popular increase its share in population through the mechanism of imita-
tion. The rate of change of the actual population state at a given instant of time is assumed
to depend on the state of the population at the same time.

Let us consider the following balance conservation equation (see [2])

ṗi(t) =
∑
j 6=i

[pjrjpij − pirip
j
i ] (1.2)

where pij is the probability that an agent who plays strategy j changes it to strategy i,
i = 1, . . . ,K.

Assuming that the agent who plays strategy i updates his choice according to the Poisson
process with arrival rate ri, we model the corresponding stochastic process as a deterministic
flow. We also assume that pij is proportional to the attractiveness ui of the strategy i i.e.
pij = cui, c = const. It means that the strategies with higher attractiveness are more likely to
be chosen. Assuming that the arrival rates rj are constant (independently of the strategy),
after straightforward transformations and rescaling time, we get

ṗi(t) =
∑
j 6=i

[pjcui − picuj ] = c(
∑
j 6=i

pjui − piuj) = c[ui(1− pi)− pi
∑
j 6=i

uj + piui − piui] =

= c(ui − uipi − piu+ piui) = cu(ui
u
− pi)

where u :=
∑K
j=1 uj , i = 1, 2, . . . ,K.

If we assume that c = 1, we obtain the below equation

ṗi = u(ui
u
− pi) (1.3)

where u :=
∑K
j=1 uj , i = 1, 2, . . . ,K. Note that for α = 1, we assume that ui(pi = 0) = 0.

The evolutionary equations state that the change of pi is controlled by its relation with
the reference function i.e. the normalized attractiveness function ũi := ui/u. The fraction
pi of the strategy i increases if ũi is greater than the actual fraction of the strategy i in the
population, and decreases if it is smaller.
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The proper combination of parameters α and β, defined by the sensitivity parameter

s = 1− β
α

describes the evolution of the considered population in time. Moreover, the sensitivity pa-
rameter plays an important role in the matching law in the operant response theory of the
mathematical psychology (cf. [2] and the references cited therein).

It is worth observing that for Homo Afectualis i.e. α = 0, β = 0 and ui = p1−α
i ν1−β

i = piνi,
i = 1, . . .K, we get the standard replicator equation

ṗi = u(ui
u
− pi) = piνi − pi

k∑
j=1

pjνj = pi(νi −
∑

j=1,...,K
pjνj).

Thus, our model with attractiveness function can be treated as a generalization of a
standard replicator model.

Critical points of the dynamics (1.3) can be obtained as solutions to the system of K − 1
equations

u1
p1

= u2
p2

= . . . = uK
pK

After substituting the attractiveness function to the above equations, for i, j = 1, . . . ,K, we
get

pi
pj

= ( νi
νj

)s. (1.4)

In particular, it means that the stability properties of solutions to the equations (1.3) depend
on the combination s of parameters α and β, not on each of them separately.
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Chapter 2

Two-person symmetric games with
two strategies

2.1. General model
In this chapter, we assume that K = 2. At each instant of time agents play a two-person

symmetric game with two strategies C and D and the following payoff matrix

C D
C R S
D T P

where all of the payoffs are nonnegative i.e. R,S, T, P ≥ 0. In a Prisoner’s Dilemma game as
well as in the other social dilemma games, C stands for cooperation, D for defection, R for
reward, S for sucker, T for temptation and P for punishment. We will denote such a matrix
by the vector [R,S, T, P ].

The above matrix is a normal-form representation of a game in which players move simul-
taneously (or do not observe the other player’s move before making their own) and receive
the relevant payoff. Both players have the same actions available. Considered games are
symmetric i.e. payoffs from choosing a particular strategy are the same for both players.
Payoffs in the matrix are given for a row player. For example, if row player chooses C and
column player chooses D, then row player receives payoff S and column player receives payoff
T . In asymmetric games, there are two numbers in each cell of the payoff matrix, the first
one represents the payoff of the row player, and the second one represents the payoff of the
column player. More information on two-person symmetric games with two strategies can be
found in Appendix A.1.

According to (1.1), the attractiveness functions for the first and the second strategy
respectively have the form

u1 = p1−α
1 ν1−β

1

u2 = p1−α
2 ν1−β

2 = (1− p1)1−αν1−β
2

For α = 1, we assume that ui(pi = 0) = 0, i = 1, 2.
Based on (1.3), we can formulate the relevant evolution equations

ṗ1 = u(u1
u
− p1) = u1 − up1

ṗ2 = u(u2
u
− p2) = u2 − up2

(2.1)
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where u = u1 + u2. From the fact that p1 + p2 = 1, this system of two equations may be
reduced to the following evolution equation

ṗ1 = p1−α
1 ν1−β

1 − p1(p1−α
1 ν1−β

1 + p1−α
2 ν1−β

2 ) =

= (1− p1)1−αp1−α
1 [(1− p1)αν1−β

1 − pα1 ν
1−β
2 ].

(2.2)

For the payoff matrix given above, the mean payoffs in the population equal

ν1 = Rp1 + Sp2 = Rp1 + S(1− p1) = (R− S)p1 + S

ν2 = Tp1 + Pp2 = (T − P )p1 + P.

After substituting ν1 and ν2 to (2.2), we get

ṗ1 =p1−α
1 (Rp1 + S(1− p1))1−β−
− p1[(p1)1−α(Rp1 + S(1− p1))1−β + (1− p1)1−α(Tp1 + P (1− p1))1−β].

(2.3)

Homo Sociologicus ṗ1 = 0
α = 0, β = 1
Homo Economicus ṗ1 = (Rp1 + S(1− p1))− p1[(R+ T )p1 + (S + P )(1− p1)]
α = 1, β = 0
Homo Afectualis ṗ1 = p1(1− p1)[p1(R− T − S + P ) + (S − P )]
α = β = 0
Homo Transcendentalis ṗ1 = 1− 2p1
α = β = 1

Table 2.1: Evolution equations for different individual types.

Now, we can study the dynamics in time and search for the critical points (equilibria) of
the ordinary differential equation (2.3). In the case of social dilemmas, where C denotes the
first, cooperative strategy, p∗ is called (asymptotic) level of cooperation in the population.
We can easily distinguish pure equilibria:

p∗ = 0 or p∗ = 1.

In order to find mixed equilibria, we substitute z = p1
1−p1

to (2.3) and get the following
equation

ż = W (z) = [Rz + S

Tz + P
]s − z (2.4)

where z ∈ (0,∞). The mixed equilibria correspond to the critical points of (2.4) in the interval
(0, 1). They have the same stability properties as the critical points of (2.3). Therefore, we
can study mixed equilibria and their stability in dynamics (2.3) or equivalently (2.4), see the
theorem below (cf. [2]).

Theorem 1. p∗ ∈ (0, 1) is a stationary solution of equation (2.3) if and only if z∗ = p∗
1

1−p∗
1
is

a stationary solution of (2.4). p∗ is stable/unstable if and only if z∗ is stable/unstable.

Existence and asymptotic properties of the solutions to the equation (2.4) depend on
the sensitivity parameter s = 1−β

α , α 6= 0. As mentioned in Chapter 1, this parameter
characterizes the personality profile of players. It is worth noting that mixed equilibria
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remain the same even if we change parameters α and β, as long as we do not change the
sensitivity parameter.

Theorem concerning existence, uniqueness and stability of the mixed equilibria for con-
sidered two-person symmetric games is given below. Proofs of Theorem 1 and Theorem 2
were conducted in [2].

Theorem 2. For payoff matrix with positive elements [R,S, T, P ], we have the following:

A) For all 0 ≤ s < ∞ there exists at least one mixed equilibrium and at most three mixed
equilibria.

B) Let us denote by B := (1 − s)PT + (1 + s) SR , ∆ := B2 − 4SPRT . If ∆ ≤ 0 or B ≥ 0 or
ST ≥ RP then the mixed equilibrium is unique.

C) There exist three mixed equilibria, if and only if ∆ > 0, B < 0, U(z1)U(z2) < 0, where
z1,2 := −B∓

√
∆

2 , U(z) := ln z + s ln Tz+P
Rz+s , z > 0.

D) If mixed equilibrium is unique, then it is globally stable in (0, 1). If there exist three mixed
equilibria, then the smallest and the greatest are stable, the middle one is unstable.

(a) [R,S, T, P ] = [4, 2, 5, 3] (b) [R,S, T, P ] = [38, 1, 40, 11]

Figure 2.1: The trajectories of solutions to the evolution equation (2.3) for a Prisoner’s
Dilemma game with parameters α = 0.2, β = 0.6 and different payoff matrices.

2.2. Prisoner’s Dilemma game
Prisoner’s Dilemma game is one of the most popular and important games in social

sciences, studied as the paradigm of evolution of cooperation. The entries in the payoff
matrix [R,S, T, P ] have to satisfy the condition T > R > P > S. If T > R > P = S, the
game is called Weak Prisoner’s Dilemma.

In replicator dynamics models, where agents play the one-shot Prisoner’s Dilemma game
at each instant of time, the only asymptotic state is defection. There are lots of solutions
of this dilemma focused on maintaining cooperation in the long term e.g. adding spatial
structure to the model, considering iterated interactions, learning by introducing the levels
of aspirations etc. Model introduced in this thesis gives the other solution to the dilemma
that allows to maintain cooperation.
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Theorem 2 (A) and D)) guarantees the existence of a mixed equilibrium for the Prisoner’s
Dilemma game. This is a very interesting result since under the standard replicator dynamics,
there is no mixed equilibrium. In our evolutionary model with attractiveness function, there
always exists a stable mixed equilibrium, in which the frequency of cooperators is greater than
zero. Under some conditions, there may exist even three mixed equilibria. For instance, for
the sensitivity s = 2 and entries of the payoff matrix belonging to the set {1, . . . , 40}, there are
five such matrices [33, 1, 36, 10], [32, 1, 33, 10], [37, 1, 38, 11], [38, 1, 40, 11],[37, 1, 39, 11] (cf. [2]).
In Figure 2.1, there are example trajectories for the Prisoner’s Dilemma game with parameters
α = 0.2, β = 0.6 and different payoff matrices. There is a unique mixed equilibrium for the
Prisoner’s Dilemma game with payoff matrix [R,S, T, P ] = [4, 2, 5, 3] (Fig. 2.1 (a)) and three
mixed equilibria for the game with payoff matrix [R,S, T, P ] = [38, 1, 40, 11] (Fig. 2.1 (b)).

(a) α = 0.2, β = 0.8, s = 1 ≤ 1+ε
1−ε = 5

3 (b) α = 0.2, β = 0.2, s = 4 > 1+ε
1−ε = 5

3

Figure 2.2: The trajectories of solutions to the evolution equation (2.3) for a coordination
game with different sensitivity parameter and payoff matrix [R,S, T, P ] = [2, 1, 1, 2].

2.3. Coordination and anti-coordination games
Let us consider a coordination game with payoff matrix [R,S, T, P ]. The payoffs have

to satisfy the conditions R > T and P > S. We can formulate a stronger result for the
uniqueness of the mixed equilibrium than it was stated in Theorem 2 (cf. [2]).

Theorem 3. For the coordination game i.e. R > T , P > S with ε := ST
RP < 1, the mixed

equilibrium is unique for s ≤ 1+ε
1−ε (see Figure 2.2 (a)).

For s > 1+ε
1−ε , the previous theorem is not valid. Counterexample with three mixed equi-

libria is shown in Figure 2.2 (b), two of them are stable.
Let us now define a general anti-coordination game with payoff matrix [R,S, T, P ]. Payoffs

satisfy the conditions T > R > 0 and S > P .

Theorem 4. For all sensitivities i.e. s ∈ (0,+∞), there exists a unique mixed equilibrium
for the anti-coordination game [R,S, T, P ], i.e. T > R > 0, S > P ≥ 0, which is a global
attractor of the dynamics (2.3).

Proofs of Theorem 3 and 4 follow easily from Theorem 2, they can be found in [2].
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Chapter 3

Two-person symmetric games with
three strategies

We apply earlier approach and introduce the attractiveness function to two-person sym-
metric games with three strategies i.e. we assume that K = 3. We consider complex per-
sonality profiles of players and dynamics of imitation, where the player’s choice of strategy
depends not only on the payoffs, but also on the popularity of the strategy. We focus mainly
on the Rock-Paper-Scissors game, but we start from a brief presentation of the general model.

3.1. General model

Let us introduce a general two-person symmetric game with three strategies 1, 2, 3 and
the following payoff matrix (cf. [7])

1 2 3
1 a11 a12 a13
2 a21 a22 a23
3 a31 a32 a33

We assume that aij > 0, ∀j ∈ {1, 2, 3}.
Mean payoffs of strategies 1, 2, 3 equal

νi(t) =
3∑
j=1

aijpj(t),

where i = 1, 2, 3. Since p1 + p2 + p3 = 1, the dynamical system has the form ṗ1 = (1− p1)p1−α
1 ν1−β

1 − p1[p1−α
2 ν1−β

2 + (1− p1 − p2)1−αν1−β
3 ]

ṗ2 = (1− p2)p1−α
2 ν1−β

2 − p2[p1−α
1 ν1−β

1 + (1− p1 − p2)1−αν1−β
3 ]

(3.1)

After easy transformations and substituting x := p2
p1

and y := p3
p1
, we get the following mixed

equilibria of the system (3.1):

x = (a21 + a22x+ a23y

a11 + a12x+ a13y
)s

y = (a31 + a32x+ a33y

a11 + a12x+ a13y
)s.

(3.2)
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Frequencies of the particular strategies are obtained by a straightforward transformation

p1 = 1
1 + x+ y

, p2 = p1x, p3 = p1y. (3.3)

3.2. Rock-Paper-Scissors game
One of the most popular evolutionary games with three strategies is a Rock-Paper-Scissors

game. This game is a paradigm for a cyclic behaviour in populations (as rock breaks scissors,
scissors cut paper, and paper covers rock). We analyze different mathematical properties of
the evolutionary dynamics for the Rock-Paper-Scissors game. Most of the results presented
below were obtained in [3] and [7].

In our model, asymptotic behaviour of the population change drastically compared to the
standard replicator dynamics of the Rock-Paper-Scissors game. The threshold of sensitivity,
above which the equilibrium is stable and below which it is unstable, can be found. We
also study the relation between the stability of equilibrium and sum of payoffs in the payoff
matrix.

3.2.1. Evolutionary scenario

We consider an infinite, homogeneous population of individuals. Players match randomly
and interact pairwise. At each instant of time, they play two-person symmetric game with
three types of behaviour i.e. R(ock), P(aper), S(cissors), and the following payoff matrix

R P S
R 1 L V
P V 1 L
S L V 1

where V is the payoff for victory and L is the payoff for loss. Moreover, we assume that
V > 1 > L ≥ 0 and M := V + 1 + L. The sum of the entries in rows is constant and equals
M .

Let us denote the fraction of players in the population that play strategy R, P and S at
time t by p1(t), p2(t) and p3(t) respectively, and the mean payoffs obtained from the relevant
strategies by ν1(t), ν2(t) and ν3(t):

ν1 = p1 + Lp2 + V p3 = p1 + Lp2 + V (1− p1 − p2)
ν2 = V p1 + p2 + Lp3 = V p1 + p2 + L(1− p1 − p2)
ν3 = Lp1 + V p2 + p3 = Lp1 + V p2 + (1− p1 − p2).

Note that ν1 + ν2 + ν3 = M . Game with such payoffs is called general Rock-Paper-Scissors
game. In the most popular case, it is assumed that V = 2 and L = 0. Such a game is called
standard Rock-Paper-Scissors game.

As before, the attractiveness function for strategies 1, 2 and 3 respectively are the Cobb-
Douglas utility functions:

u1 = p1−α
1 ν1−β

1

u2 = p1−α
2 ν1−β

2

u3 = p1−α
3 ν1−β

3 = (1− p1 − p2)1−αν1−β
3 .
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For α = 1, we assume that ui(pi = 0) = 0, i = 1, 2, 3.
Evolution equations have the form (see (1.2))

ṗ1 = u(u1
u
− p1) = u1 − up1

ṗ2 = u(u2
u
− p2) = u2 − up2

ṗ3 = u(u3
u
− p3) = u3 − up3

where u = u1 +u2 +u3. Since p1 +p2 +p3 = 1, the system of three equations may be reduced
to the below system ṗ1 = (1− p1)p1−α

1 ν1−β
1 − p1[p1−α

2 ν1−β
2 + (1− p1 − p2)1−αν1−β

3 ]

ṗ2 = (1− p2)p1−α
2 ν1−β

2 − p2[p1−α
1 ν1−β

1 + (1− p1 − p2)1−αν1−β
3 ]

(3.4)

After substituting proper payoff values, we obtain the following evolution equations

ṗ1 =p1−α
1 (p1 + Lp2 + V (1− p1 − p2))1−β

− p1[p1−α
1 (p1 + Lp2 + V (1− p1 − p2))1−β+

+ p1−α
2 (V p1 + p2 + L(1− p1 − p2))1−β

+ (1− p1 − p2)1−α(Lp1 + V p2 + (1− p1 − p2))1−β]
ṗ2 =p1−α

2 (V p1 + p2 + L(1− p1 − p2))1−β

− p2[p1−α
1 (p1 + Lp2 + V (1− p1 − p2))1−β+

+ p1−α
2 (V p1 + p2 + L(1− p1 − p2))1−β

+ (1− p1 − p2)1−α(Lp1 + V p2 + (1− p1 − p2))1−β]

(3.5)

We can study the evolution in time and search for critical points (equilibria) of the above
dynamical system. Theorems 5 and 6 recalled below and their proofs can be found in [3].

Theorem 5. For personality types α, β ∈ (0, 1), s = 1−β
α , the critical point p∗ = (1

3 ,
1
3) is

locally asymptotically stable if and only if one of the two following conditions is satisfied:

• M ≥ 3

• 2 < M < 3 and s < 2M
3−M

If 2 < M < 3 and s > 2M
3−M , then the critical point p∗ is unstable (see Figure 3.1)

The first condition states that if the sum of payoffs M is large enough (M ≥ 3), then the
asymptotic stability appears for all sensitivity parameters s ∈ (0,∞). The second condition
means that for 2 < M < 3 the stability occurs, when the sensitivity parameter s is small
enough i.e. s < 2M

3−M . Furthermore, if the payoff for victory V reaches the lowest level V = 1
(that corresponds to M approaching 2), then the sensitivity cannot be greater than 4 to
ensure the stability of the critical point.

Graphs that illustrates the Theorem 5 are presented in Figure 3.1. For s = 41
2 andM = 4,

the equilibrium point p∗ = (1
3 ,

1
3) is stable (Fig. 3.1 (a)). The situation is similar for the

smaller value of M = 2.5 (Fig. 3.1 (b)). Accordingly to the Theorem 5, for s = 16 and
M = 2.5 the equilibrium point p∗ is unstable and the trajectory approaches the boundary of
the simplex (Fig. 3.1 (c)).
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(a) α = 0.2, β = 0.2, V = 3, L = 0, M = 4
s = 4 < 2M

3−M = 10
(b) α = 0.2, β = 0.2, V = 1.5, L = 0, M = 2.5
s = 4 < 2M

3−M = 10

(c) α = 0.05, β = 0.2, V = 1.5, L = 0, M = 2.5,
s = 16 > 2M

3−M = 10

Figure 3.1: The trajectories of solutions to the evolution equations (3.4) for a Rock-Paper-
Scissors game with different parameters and initial conditions.

It is worth noting that for the standard Rock-Paper-Scissors game (V = 2 i L = 0), the
critical point p∗ is locally asymptotically stable for all α, β ∈ (0, 1), though, it is only stable
in the Lyapunov sense for the classical replicator equations. Introducing the attractiveness
function in the evolutionary dynamics has transformed the Lyapunov stability of the critical
point into the asymptotic stability.

It is also worthy of observation that for positive sensitivities i.e. for β 6= 1, the eigenvalues
of the Jacobian matrix of the system (3.4) have nonzero imaginary parts (cf. [3]). As expected,
the solutions exhibit some kind of cyclic behaviour, which is more visible for smaller values
of β. For the critical value s = 2M

3−M , the eigenvalues are pure imaginary.
In particular, Theorem 5 implies that for M ∈ (2, 3) and sensitivities large enough the

critical point p∗ = (1
3 ,

1
3) loses its stability. We can study the qualitative behaviour of the

critical point using the bifurcation theorem.

Theorem 6. For M ∈ (2, 3) and s = 2M
3−M , the Hopf bifurcation appears. If, additionally,

β(V − L)2 − (V + L)(2− V − L) < 0,
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then the bifurcation is supercritical i.e. when point (1
3 ,

1
3) loses its stability, an asymptotically

stable limit cycle appears. If

β(V − L)2 − (V + L)(2− V − L) > 0,

then the bifurcation is subcritical i.e. when the critical point gains stability, an unstable cycle
appears.

3.2.2. Bautin bifurcation in Rock-Paper-Scissors game

As presented in [3], for some values of parameters e.g. V = 1.4, L = 0, α = 0.025 and
β = 0.825, the critical point p∗ = (1

3 ,
1
3) is stable, but the limit cycle becomes unstable.

We observe that a trajectory of solution that starts inside the limit cycle converges to the
critical point p∗ and the one that starts outside the cycle converges to a larger stable limit
cycle, which is situated close to the boundary. It may suggest the occurrence of a secondary
fold bifurcation (see Figure 3.2). There is a hypothesis that this phenomenon is related to
a Bautin bifurcation. Further investigations in this field may become a topic of the future
work.

(a) α = 0.025, β = 0.825

Figure 3.2: The trajectories of solutions to the evolution equations (3.4) for a Rock-Paper-
Scissors game with V = 1.4 and L = 0.
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Chapter 4

Modifications of the attractiveness
function

4.1. General attractiveness function

The attractiveness function introduced in Chapter 1 (1.1) can be extended and general-
ized. Apart from popularity and payoffs, we can take other factors into account. General
attractiveness function can better reflect different psychological types of individuals since it
includes other important factors that may have an impact on agent’s choice.

Let us assume that fi, ki, li, γ ∈ R+ are constants, vi = D2
i

ν2
i

and D2
i is the variance of

payoffs, i = 1, . . . ,K. We consider the following additional factors that can be added to the
attractiveness function:

• transcendent factor f1−β
i

It reflects an impact of non-material issues that influence the attractiveness of the
strategy i. For instance, strategy C may be treated by players as a better strategy
than D since cooperation is very often psychologically perceived as more attractive. In
general, people usually prefer to cooperate and behave in an unselfish way. Cooperation
and supporting other people may bring them non-material positive benefits.

• rate factor (1 + ki
dpi
dt )

This factor includes the rate of popularity change of strategy i. It seems reasonable to
consider such a factor in the attractiveness function. For instance, it is very common
that the attractiveness of some behaviour may be magnified, when this behaviour is get-
ting more and more popular and is spreading quickly among individuals. An analogous
phenomenon may occur in the opposite situation, when an action loses its popularity.

• selection potential (1 + livi)γ
Here, we take into account the variance of payoffs. This factor refers to selection and
variability. In biological applications, the variance of payoffs is a measure of differenti-
ation and reproduction success among individuals. Species with a great deal of genetic
variability is better adapted to the environmental situation and is more likely to sur-
vive than a species with limited variability. In our social model, we can also take into
account the variance of payoffs. The greater the variance is, the more attractive such
strategy may be for the agents. This factor determines in some extent the potential of
population to respond to selection (see [6]). Thus, we call this factor selection potential.
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The general attractiveness function ui takes the form

ui = p1−α
i ν1−β

i f1−β
i (1 + ki

dpi
dt

)(1 + livi)γ (4.1)

where i = 1, . . . ,K.
Let us now focus on a two-person game with two strategies i.e. we assume that K = 2.

We will use the following notation

ν̃i = fiνi, Ki = 1 + ki
dpi
dt

and Li = (1 + livi)γ

where i = 1, 2. If we insert the attractiveness function (4.1) into the evolution equation (1.3),
then we get

ṗ1 =p1−α
1 ν̃1−β

1 K1L1 − p1[p1−α
1 ν̃1

1−βK1L1 + (1− p1)1−αν̃1−β
2 K2L2] =

=p1−α
1 ν̃1−β

1 L1 + p1−α
1 ν̃1−β

1 L1k1ṗ1 − p2−α
1 ν̃1L1−

− p2−α
1 ν̃1−β

1 L1k1ṗ1 − p1(1− p1)1−αν̃1−β
2 L2 + p1ṗ1(1− p1)1−αν̃1−β

2 L2k2.

After transformations, we obtain

ṗ1(1− p1−α
1 ν̃1−β

1 L1k1 + p2−α
1 ν̃1−β

1 L1k1 − p1(1− p1)1−αν̃1−β
2 L2k2) =

= p1−α
1 ν̃1−β

1 L1 − p1(p1−α
1 ν̃1−β

1 L1 + (1− p1)1−αν̃1−β
2 L2).

Finally, the evolution equation for a two-person game with two strategies takes the following
form

ṗ1 = (1−p1−α
1 ν̃1−β

1 L1k1 +p2−α
1 ν̃1−β

1 L1k1)−1[(1−p1)p1−α
1 ν̃1−β

1 L1 + (1−p1)1−αν̃1−β
2 L2] (4.2)

Influence on the dynamics of additional factors added to the attractiveness function is
studied in sections below.

4.2. Transcendent factor
The attractiveness function (1.1) with the additional transcendent factor f1−β

i has the
following form

ui = f1−β
i p1−α

i ν1−β
i = p1−α

i (fiνi)1−β (4.3)

where i = 1, . . . ,K. It is clear to see that taking into account the transcendent factor causes
a change of payoff matrix and leads to multiplying payoffs in the i-th row by fi.

In this section, we investigate the influence of the transcendent factor on the dynamics
of our model for games with two strategies as well as for a Rock-Paper-Scissors game and a
Weak Iterated Prisoner’s Dilemma game.

4.2.1. Games with two strategies

Let us consider a two-person symmetric game with two available strategies C and D, and
payoff matrix [R,S, T, P ], where R,S, T, P > 0. It is clear to see that

f1ν1 = p1Rf1 + (1− p1)Sf1

f2ν2 = p1Tf2 + (1− p1)Pf2.
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Therefore, including the transcendent factor in the attractiveness function leads to the fol-
lowing payoff matrix

C D
C f1R f1S
D f2T f2P

Obviously, with change of f1 and f2 values, the type of game may change (see Figure 4.1).
From this point we will assume that f1 > 0 and f2 = 1, so the payoff matrix is as follows

C D
C f1R f1S
D T P

(4.4)

Influence of transcendent factor on equilibrium level

The mixed equilibria correspond to the critical points of the evolution equation (2.3) with
payoff matrix (4.4). They are equivalent to the critical points of the following equation

ż = (Rz + S

Tz + P
)sfs1 − z (4.5)

where z = p1
1−p1

and s = 1−β
α , see (2.4). We can rewrite this equation as follows

ż = (
z + S

R

z + P
T

)s(R
T
f1)s − z.

The critical points of the above equation satisfy the following condition

(1 +
S
R −

P
T

z + P
T

)s = z

(RT f1)s
. (4.6)

The expression in brackets on the right hand side of the equation (4.6) is a hyperbola and
the left hand side of this equation is a straight line with a slope (RT f1)−s.

Let us assume that initially f1 = 1 and the number of equlibria does not change while
changing the f1 value. We checked numerically that if initially there was a unique mixed
equilibrium, then with increasing f1, the slope of the straight line becomes flatter and the
equilibrium point moves right – the level of cooperation increases. Similarly, with decreasing
f1, the level of cooperation decreases. If initially there were three mixed equilibria, then with
increasing f1 the level of cooperation increases for the greatest and the smallest equilibria
and decreases for the middle one. For decreasing f1 the situation is opposite i.e. the level of
cooperation decreases for the greatest and the smallest equilibria and increases for the middle
one. For instance, for payoff matrix [R,S, T, P ] = [2, 1, 1, 2], sensitivity parameter s = 4 and
transcendent factor f1 = 1, there are three mixed equilibria p∗zi = zi

zi+1 , i = 1, 2, 3, where
z∗1 ≈ 0.11 z∗2 = 1 and z∗3 ≈ 8.79. For f1 = 1.05, zi values equal respectively 0.20, 0.51, 12.61.

Results for particular values of sensitivity parameter

For some particular values of the sensitivity parameter s, we can give the necessary
conditions for existence of a unique root or exactly three roots of the evolution equation (4.5)
inside the interval (0, 1).
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• s = 1
In this case, the uniqueness is clear – it results from Theorem 2 (moreover, we get the
uniqueness for all s ≤ 1).
Under our dynamics with attractiveness function, using the equation (4.5) we obtain

f1(Rz + S) = (Tz + P )z ⇔ Tz2 + z(P − f1R)− f1S = 0.

There is a unique positive root of this equation

z∗ = f1R− P +
√

(f1R− P )2 + 4f1TS

2T .

We can easily conclude that for f1 > 1 and R > P the level of cooperation increases
compared to the situation when f1 = 1.

• s = 2
Here, we obtain the equation

(Rz + S)2f2
1 = z(Tz + P )2

which after easy transformations can be rewritten in the form

z3T 2 + z2(PT −R2f2
1 ) + z(P 2 − 2RSf2

1 )− S2f2
1 = 0.

Let us apply the Descartes’ rule of signs. The rule states that the number of positive
roots of a polynomial with real coefficients ordered by descending variable exponent is
equal to the number of sign differences between nonzero coefficients or is less than this
number by a multiple of 2.
Therefore the necessary conditions for existence of three roots are PT −R2f2

1 < 0 and
P 2 − 2RSf2

1 > 0.

Similar necessary conditions for the existence of three roots (based on Descartes’ rule of
signs) can be formulated for every natural s.

Influence of transcendent factor on type of game

It is also worth to check how the transcendent factor value influences the type of game.
As it was mentioned before, it is possible that the type of game changes while changing the
value f1.

Let us consider games for which the conditions R > S and T > P are satisfied, e.g.,
Prisoner’s Dilemma game (PD), Snow-Drift game (SD), Stag Hunt game (SH, we assume
that T 6= P ) or Harmony game (HG). The relation between the type of game and the f1
value is depicted in the figure below.

We can also investigate the influence of the f1 value on a frequency of agents who play
strategy C under the standard replicator dynamics. It can be easily calculated that under
the assumption f1R−T

P−f1S
> 0, this frequency equals

1
1 + f1R−T

P−f1S

.
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f1

HG
PD

SH (if PS > T
R)

SD (if PS < T
R)

HG

0 P
R min(PS ,

T
R) max(PS ,

T
R) T

S

Figure 4.1: Relation between the type of game and the transcendent factor f1 value.

For instance, if we consider the transcendent factor f1 > 1 for which the type of game
does not change, we obtain the following results:

• Snow Drift
The share of C-players increases in the population unless T < f1R (then the type of
game changes).

• Anti-coordination game
There is also an increase in the share of C-players unless f1R > T .

• Coordination game
The frequency of C-players decreases unless f1S > P .

4.2.2. Game with three strategies – Iterated Prisoner’s Dilemma game

Let us now focus on the interesting game with three strategies, namely a finitely repeated
Prisoner’s Dilemma game, which is often called the Iterated Prisoner’s Dilemma game. Let
us denote the number of iterations by m and consider the following strategies (cf. [7]):

• AllC – agent plays always strategy C irrespectively from the strategies of the other
players

• AllD – agent plays always strategy D irrespectively from the strategies of the other
players

• TFT (Tit For Tat) – agent plays the previous strategy of his opponent, in first round
he cooperates.

Let us introduce the transcendent factor f1−β
i in the attractiveness function, i = 1, 2, 3.

The payoff matrix for the Iterated Prisoner’s Dilemma game with payoffs including transcen-
dent factors has the following form

AllC AllD TFT
AllC f1Rm f1Sm f1Rm
AllD f2Tm f2Pm f2[T + P (m− 1)]
TFT f3Rm f3[S + P (m− 1)] f3Rm

where T > R > P ≥ S (if P = S we obtain so called Weak Prisoner’s Dilemma game). We
also require that R > (T +S)/2 to prevent mutual alternate cooperation and defection being
more profitable than mutual cooperation.
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(a) f1 = 1 (b) f1 = 1.6

(c) f1 = 1.75 (d) f1 = 1.9

Figure 4.2: The trajectories of solutions to the evolution equations (3.4) for an Iterated
Prisoner’s Dilemma with the following parameters: α = β = 0.1, [R,S, T, P ] = [2, 0, 3, 1],
m = 10, f2 = f3 = 1, p1(0) = p2(0) = 0.1 and changing parameter f1.

Iterated Prisoner’s Dilemma game – numerical results

We checked that if we change the parameter f1 and keep the other parameters f2 and
f3 equal to 1, then there exists a threshold above which we obtain a limit cycle. Figure 4.2
depicts the trajectories of solutions to the evolution equations (3.4) obtained for the Iterated
Prisoner’s Dilemma with transcendent preferences for the following values of parameters:
[R,S, T, P ] = [2, 0, 3, 1], m = 10, α = β = 0.1, f2 = f3 = 1 and four different f1. For
increasing values of f1, the oscillations around an equilibrium point occurs. For a narrow
interval around 1.75 we observe a limit cycle. For f1 = 1.9 the limit cycle does not exist and
the trajectory converges to the stable point, in which the frequency of C-players is higher
than 0.8. If we further increase the value of parameter f1, then the share of AllC-players
tends to 1.

For comparison and to investigate the speed of approaching equilibrium, we have obtained
Figure 4.2 (c) with Dynamo, which is an open-source software that run within Mathematica
(see Figure 4.3). The colours in the contour plot represent different speeds of motion under
our dynamics with attractiveness function – red means fast and blue means slow.
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Figure 4.3: The trajectory of solution to the evolution equations (3.4) for an Iterated Pris-
oner’s Dilemma game with the following parameters: α = β = 0.1, [R,S, T, P ] = [2, 0, 3, 1],
m = 10, f1 = 1.75, f2 = f3 = 1 and p1(0) = p2(0) = 0.1.

Weak Iterated Prisoner’s Dilemma game – analytical results

Let us return to the general model of two-person symmetric games with three strategies
that was introduced in Chapter 3, Section 3.1. We assume that P = S = 0 i.e. we consider
a Weak Iterated Prisoner’s Dilemma game. Based on the results from Chapter 3 (cf. (3.2)
and (3.3)), the frequencies of AllC, AllD and TFT players are equal respectively

p1 = 1
1 + x+ y

, p2 = p1x and p3 = p1y

where x := p2
p1
, y := p3

p1
.

Now, we consider the modified payoff matrix including the following transcendent factors:

• f1 = f2 = f3 = 1
According to (3.2), we obtain

y = [Rm+Rmy

Rm+Rmy
]s = 1 and x = [ Tm+ Ty

Rm+Rmy
]s = [T (m+ 1)

2Rm ]s.

It is worth noting that for increasing ratio T
R , the shares of AllC and TFT players in

mixed equilibrium decrease, which is in agreement with intuition.

• f1 6= 1, f2 = f3 = 1
In this case

y = [f1Rm+ f1Rmy

Rm+Rmy
]s = fs1 and x = [T (m+ 1)

2f1Rm
]s.
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As expected, for f1 < 1 the shares of AllC and TFT players decrease in mixed equilib-
rium, for f1 > 1 they increase.

• f2 6= 1, f1 = f3 = 1
We get

y = [Rm+Rmy

Rm+Rmy
]s = 1 and x = [f2T (m+ 1)

2Rm ]s.

Here, the situation is opposite i.e. for f2 < 1 the shares of AllC and TFT players
increase in mixed equilibrium, for f2 > 1 they decrease, as it was expected.

• f3 6= 1, f1 = f2 = 1
We obtain

y = fs3 and x = [ T (m+ fs3 )
Rm(1 + fs3 ) ]s.

For f3 < 1, the shares of AllC and TFT players decrease in mixed equilibrium, for
f3 > 1 they increase. This case is analogous to the second one, when f1 6= 1, f2 = f3 = 1.

(a) f1 = 1 (b) f1 = 2.2

(c) f1 = 2.6 (d) f1 = 2.8

Figure 4.4: The trajectories of solutions to the evolution equations (3.4) for a Rock-Paper-
Scissors game with the following parameters: α = β = 0.1, V = 2, L = 0, f2 = f3 = 1,
p1(0) = p2(0) = 0.1 and changing parameter f1.
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4.2.3. Game with three strategies – Rock-Paper-Scissors game

Let us consider consider a Rock-Paper-Scissors game with attractiveness function and the
following payoff matrix including transcendent factors

R P S
R f1 f1L f1V
P f2V f2 f2L
S f3L f3V f3

Let us assume that f2 = f3 = 1, α = β = 0.1, V = 2 and L = 0 (standard Rock-
Paper-Scissors game). For different values of f1 we obtain the graphs presented in Figure
4.4. Similarly as it was in the Iterated Prisoner’s Dilemma game, if the f1 value exceeds
some threshold, then we obtain a limit cycle. In this case, the limit cycle appears for f1 in a
narrow interval around 2.6 (see also Figure 4.5). However, for f1 = 2.8 the trajectory again
quickly approaches a stable equilibrium level. Since the strategies in the Rock-Paper-Scissors
game are equivalent, the limit cycle also appears in the analogous intervals for the remaining
transcendent factors i.e. when we change f2 or f3 value and keep the other parameters equal
to 1.

Mathematical explanation of the phenomenon obtained for the Rock-Paper-Scissors game
as well as for the Weak Iterated Prisoner’s Dilemma game may be a subject of the future
research.

Figure 4.5: The trajectories of solutions to the evolution equations (3.4) for a Rock-Paper-
Scissors game with the following parameters: α = β = 0.1, V = 2, L = 0 f1 = 2.6, f2 = f3 = 1
and p1(0) = p2(0) = 0.1.
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4.3. Rate factor
In this section, we focus on the attractiveness function with the rate factor (1 + ki

dpi
dt )

ui = (1 + ki
dpi
dt

)p1−α
i ν1−β

i = p1−α
i (fiνi)1−β (4.7)

where i = 1, . . . ,K. The value of this factor depends on the rate of change in popularity of
a strategy i.

Let us consider two-person symmetric games with two strategies. If we include the rate
factor in the attractiveness function, then we obtain the following evolution equation

ṗ1 =p1−α
1 ν1−β

1 (1 + k1ṗ1)− p1[p1−α
1 ν1−β

1 (1 + k1ṗ1) + (1− p1)1−αν1−β
2 (1 + k2ṗ1)] =

=ṗ1[k1p
1−α
1 ν1−β

1 − k1p1(p1−α
1 ν1−β

1 + k2p1(1− p1)1−αν1−β
2 )] + p1−α

1 ν1−β
1 −

− p1(p1−α
1 ν1−β

1 + (1− p1)1−αν1−β
2 )

After transformations, we obtain
ṗ1 =[1− k1p

1−α
1 ν1−β

1 + k1p1(p1−α
1 ν1−β

1 )− k2p1(1− p1)1−αν1−β
2 ]−1·

· [p1−α
1 ν1−β

1 − p1(p1−α
1 ν1−β

1 + (1− p1)1−αν1−β
2 )] =

=[1− k1(1− p1)p1−α
1 ν1−β

1 − k2p1(1− p1)1−αν1−β
2 ]−1·

· [(1− p1)p1−α
1 ν1−β

1 − p1(1− p1)1−αν1−β
2 )]

Let us assume that k1 = 1 and k2 = 0 i.e. we include the influence of the rate factor only
on the first strategy. The evolution equation takes the form

ṗ1 =[1− (1− p1)p1−α
1 ν1−β

1 ]−1 · [(1− p1)p1−α
1 ν1−β

1 − p1(1− p1)1−αν1−β
2 ]. (4.8)

If W (p1) = (1 − p1)p1−α
1 ν1−β

1 ∈ (0, 1), then the rate factor causes an increase of the rate of
convergence to the equilibrium level. It is obvious that W (p1) is greater than zero, so the
only thing we have to check is when

(1− p1)p1−α
1 ν1−β

1 < 1.
This is equivalent to the inequality

ν1 < (1− p1)
−1

1−β p
α−1
1−β
1 .

Since p1 < 1, we obtain the following inequalities

ν1 = (R− S)p1 + S < R < (1− p1)
−1

1−β p
α−1
1−β
1 . (4.9)

They are always satisfied when R ≤ 1.

Weak Prisoner’s Dilemma game

Let us now consider the Weak Prisoner’s Dilemma game with the following payoff matrix
C D

C 1 0
D b 0

(4.10)

where b > 1. This payoff matrix was introduced in [5]. The inequalities (4.9) are satisfied
for such a payoff matrix since R = 1. Hence, we can conclude that for the Weak Prisoner’s
Dilemma game with payoff matrix (4.10) and the attractiveness function with rate factor
k1 = 1 and k2 = 0, we have an increase in the rate of convergence to the equilibrium level
(see Figure 4.6 (a)).
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(a) Attractiveness function including the
rate factor (4.7) with the following parameters:
α = 0.2, β = 0.8,
k2 = 0, k1 = 0 and k1 = 1.
Payoff matrix: [R,S, T, P ] = [1, 0, 2, 0].

(b) Attractiveness function including the selection
potential (4.11) with the following parameters:
α = 0.5, β = 0.5,
l1 = l2 = 0 and l1 = l2 = 1 (for γ = 0.5 and γ = 0.25).
Payoff matrix: [R,S, T, P ] = [3, 0, 5, 1].

Figure 4.6: The trajectories of solutions to the evolution equations (2.1) with attractiveness
function including additional factors for a Weak Prisoner’s Dilemma game.

4.4. Selection potential
The attractiveness function including selection potential takes the following form

ui = (1 + livi)γp1−α
i ν1−β

i f1−β
i (4.11)

where i = 1, . . . ,K. We denote by vi(x) := D2
i

ν2
i
the variability of strategy i. D2

i is the variance
of payoffs i.e. D2

i =
∑
j pj(aij − νi)2, i = 1, . . . ,K.

We focus on two-person symmetric games with two strategies. The variance of payoffs for
strategy C and D respectively equal

D2
1 = p1(R− (p1R+ p2S))2 + p2(S − (p1R+ p2S))2 = p1R

2 + (1− p1)S2 − ν2
1

D2
2 = p1(T − (p1T + p2P ))2 + p2(P − (p1T + p2P ))2 = p1T

2 + (1− p1)P 2 − ν2
2 .

After straightforward transformations, we get

v1(p1) = p1R
2 + (1− p1)S2

ν2
1

− 1

v2(p1) = p1T
2 + (1− p1)P 2

ν2
2

− 1

and the evolution equation has the following form

ṗ1 = (1− p1)p1−α
1 ν1−β

1 (1 + l1v1(p1))γ − p1(1− p1)1−αν1−β
2 (1 + l2v2(p1))γ . (4.12)

Let us assume that l1 = l2 = 1 and simplify the equation (4.12). We obtain

ṗ1 =(1− p1)p1−α
1 ν1−β

1 ( p1R
2 + (1− p1)S2

(p1R+ (1− p1)S)2 )γ − p1(1− p1)1−αν1−β
2 ( p1T

2 + (1− p1)P 2

(p1T + (1− p1)S)2 )γ =

=(1− p1)p1−α
1 ν1−β−2γ

1 (p1R
2 + (1− p1)S2)γ − p1(1− p1)1−αν1−β−2γ

2 (p1T
2 + (1− p1)P 2)γ
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Let us substitute z = p1
1−p1

. We get

ż =z1−α(z + 1)α(Rz + S)1−β−2γ(z + 1)β+γ−1(Rz2 + S2)γ−
− z(z + 1)α−1+β+γ(zT 2 + P 2)γ(Tz + P )1−β−2γ =

=(z + 1)α−1+β+γz[z−α(Rz + S)1−β−2γ(Rz2 + S2)γ − (Tz + P )1−β−2γ(Tz2 + P 2)γ ].

In order to find the equilibria, we have to solve the following equation

z−α(Rz + S)1−β−2γ(Rz2 + S2)γ − (Tz + P )1−β−2γ(Tz2 + P 2)γ = 0.

The solutions of the above equation can be expressed in the form

z−α = (Tz + P

Rz + S
)1−β[(Rz + S

Tz + P
)2(T

2z + P 2

R2z + S2 )]γ . (4.13)

Let us assume that S = 0 and the coefficients α and β satisfy the condition α + β = 1.
Then, the attractiveness function is the classical Cobb-Douglas function with constant returns
to scale, multiplied by the selection potential. Under such assumptions, we can rewrite the
equation (4.13)

1 = (Tz + P )α[z T
2z + P 2

(Tz + P )2 ]γ . (4.14)

For some parameters α and γ we can analytically obtain a precise value of mixed equilib-
rium using the formula (4.14). Below, we consider the evolution equation for payoff matrix
[3, 0, 5, 1] (Prisoner’s Dilemma game) and some specific values of parameters α and γ.

• α = γ = 1
2

After substituting α and γ values and the payoffs to the equation (4.14), we get the
quadratic equation

T 2z2 + z(P 2 −RT )−RP = 0

with ∆ = P 4 − 2P 2RT +R2T 2 + 4T 2RP = 496.
The unique positive root of this equation is z∗ = RT−P 2+

√
∆

2T 2 ≈ 0, 73, so p∗1 ≈ 0.73
1.73 ≈ 0.42.

• α = 1
2 , γ = 1

4
In this case, we also get the quadratic equation

T 2z2 + P 2z −R2 = 0

with ∆ = P 4 + 4T 2R2 = 901.
The unique positive root of this equation is z∗ = −P 2+

√
∆

2T 2 ≈ 0.58, thus, p∗1 ≈ 0.58
1.58 ≈ 0.37

It is worthy of observation that including the selection potential (1+ li
D2
i

ν2
i

)γ in the attractive-
ness function may strongly influence the level of cooperation. For the payoff matrix [3, 0, 5, 1],
the cooperation level increases significantly compared to the case with ”classic” attractiveness
function. The equilibrium value for a Prisoner’s Dilemma game using the attractiveness func-
tion without additional factors (1.1), can be easily calculated and is equal to p∗1 = 2

7 ≈ 0.29.
This value is significantly smaller than p∗1 ≈ 0.37 in the first case considered above, when
α = γ = 1

2 or p∗1 ≈ 0.42 in the second case, when α = 1
2 , γ = 1

4 . The results are presented
in Figure 4.6. Description of the general behaviour of p∗1 in the case of the attractiveness
function with selection potential (4.11) needs further numerical computations.
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4.5. Nonconformist preferences
So far, in our model, the attractiveness of the strategy has been increasing with increasing

popularity. However, some players may have entirely opposite preferences i.e. the strategy
may lose its popularity. We will call it the nonconformist preferences. In such situations,
where people are more likely to make less popular choices to feel elite, our attractiveness
function (1.1), introduced in Chapter 1, is inadequate.

Including the concept of nonconformist preferences in the attractiveness function leads to
the following modification

ui = (1− pi)1−αν1−β
i (4.15)

where i = 1, . . . ,K.
Below, we prove an interesting theorem for two-person symmetric games with two strate-

gies and nonconformist preferences.

4.5.1. Two-person symmetric games with two strategies

Theorem 7. There exists a unique mixed equilibrium in two-person symmetric games with
nonconformist preferences and positive payoffs.

Proof. The attractiveness functions take the form

u1 = (1− p1)1−αν1−β
1 and u2 = p1−α

1 ν1−β
2 .

We obtain the following evolution equation

ṗ1 = (1− p1)1−αν1−β
1 − p1[(1− p1)1−αν1−β

1 + p1−α
1 ν1−β

2 ] =

= p1−α
1 (1− p1)1−α[ν1−β

1 p1−α
1 (1− p1)− (1− p1)1−αp1ν

1−β
2 ]

After substituting z = p1
1−p1

, z ∈ (0, 1), we get

ż

(z + 1)2 =z1−α(z + 1)2(α−1)[(Rz + S)1−β(z + 1)β−α−1zα−1]−

− (z + 1)β−α−1z(Tz + P )1−β] = P (z)[zα−1(Rz + S)1−β − z(Tz + p)1−β]

where P (z) > 0. Now, we find the critical points of the above equation

P (z)[zα−1(Rz + S)1−β − z(Tz + p)1−β] = 0⇔ (Rz + S

Tz + P
)1−β = z2−α.

Let s̃ = 1−β
2−α . We assume that α ∈ [0, 1] and β ∈ [0, 1], therefore s̃ ∈ [0, 1]. From

Theorem 2 B) (Chapter 2) we obtain that B = (1− s)PT + (1 + s) SR ≥ 0. Therefore, we can
conclude that there exists a unique mixed equilibrium in two-person symmetric game with
two strategies.
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Chapter 5

Games with delay

Differential equations with a delayed argument are a very dynamically developing branch
of mathematics. Since many problems are still open and for the others there are only partial
results, they attract interest of scientists. In natural or social sciences, the equations with
delay occur more and more often mainly due to the fact that many processes and phenomena
happen with the presence of delay. An individual, an organism or a cell need time to take
action after receiving some signal. In biological applications the delay has been introduced
many years ago, cf. the Hutchinson model which has been proposed in 1948 as a delayed
version of the logistic equation. Differential equations with delay generate infinite dimensional
dynamical systems with corresponding phase space that is the functional space (usually the
set of continuous functions) and are generally much more difficult to analyze than ordinary
differential equations.

Models with delays have been already studied in numerous scientific papers. However,
human behavior models with delays have not been thoroughly explored. In our case, model
with the delayed attractiveness function better describes the real dynamics of interpersonal
relations. People have a natural tendency to analyze their own and/or partner’s reactions,
which necessarily takes some time.

Basic information about delay differential equations can be found in Appendix A.3

5.1. Attractiveness function with delay
In real situations, it is very common that decisions made by individuals are based not

only on present information, but also on a past knowledge. It concerns social as well as
economical situations, when it is often difficult to obtain present information. Thus, it seems
to be sensible to incorporate delays in our evolutionary model.

In the equations presented in previous chapters, the attractiveness of a strategy i at time
t has an instantaneous impact on a rate of change of frequency pi. An alternative more
realistic model would have some delay – the attractiveness acquired at time t will impact the
rate of growth τ time later. We introduce delays to the attractiveness function and try to
observe the effects on the dynamics of our model. Since the delay evolution equations are
very complicated, we focus on numerical investigations. The study presented in this chapter
is mostly exploratory and may be a subject of further interest.

Delayed dependence on time in the attractiveness function can be introduced in various
ways (cf. 1.1):

• payoffs
ui(t) = (pi(t))1−α(νi(t− τ))1−β
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• popularity
ui(t) = (pi(t− τ))1−α(νi(t))1−β

• both popularity and payoffs

ui(t) = (pi(t− τ1))1−α(νi(t− τ2))1−β

where i = 1, . . . ,K and K is the number of available strategies.
In the next sections, results for different types of games are presented. It is worth noting

that these results differ significantly depending on the type of game. It is difficult to say
something in general about the influence of delays on all games, for instance, in the performed
numerical investigations, the oscillations appear only for the delay added to payoffs in the
anti-coordination game.

5.2. Two-person symmetric games with two strategies
The evolution equations for a two-person symmetric game with two strategies and attrac-

tiveness function with delays in different factors (popularity, payoffs, both popularity and
payoffs) are presented below.

A. No delay
Analysis of this equation was presented in Chapter 2 (2.2).

ṗ1 =(p1)1−α(Rp1 + S(1− p1))1−β − p1[(p1)1−α(Rp1 + S(1− p1))1−β+
+ (1− p1)1−α(Tp1 + P (1− p1))1−β]

B. Delay in popularity
Popularity of strategy C at time t will impact the rate of growth τ time later.

ṗ1 =(pτ1)1−α(Rp1 + S(1− p1))1−β − p1[(pτ1)1−α(Rp1 + S(1− p1))1−β+
+ (1− pτ1)1−α(Tp1 + P (1− p1))1−β]

(5.1)

C. Delay in payoffs
Payoff acquired at time t will impact the rate of growth τ time later.

ṗ1 =(p1)1−α(Rpτ1 + S(1− pτ1))1−β − p1[(p1)1−α(Rpτ1 + S(1− pτ1))1−β+
+ (1− p1)1−α(Tpτ1 + P (1− pτ1))1−β]

(5.2)

D. Delay both in popularity and payoffs
Asymmetric time delays τ1 and τ2 are added in both factors (popularity and payoffs).

ṗ1 =(pτ1
1 )1−α(Rpτ2

1 + S(1− pτ2
1 ))1−β − p1[(pτ1

1 )1−α(Rpτ2
1 + S(1− pτ2

1 ))1−β+
+ (1− pτ1

1 )1−α(Tpτ2
1 + P (1− pτ2

1 ))1−β]
(5.3)

Delay introduced in popularity, payoffs or in both factors causes interesting effects and
essential changes of the trajectories of solutions. We focus on the Prisoner’s Dilemma game,
coordination and anti-coordination games, and we analyze the numerical results obtained for
some particular values of parameters.
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5.2.1. Prisoner’s Dilemma game

In this subsection, our main focus is a Prisoner’s Dilemma game with payoff matrix
[R,S, T, P ] = [4, 2, 5, 3]. We consider a case with delay τ = 3. Then the trajectories of
solutions to the evolution equation with attractiveness function delayed in payoffs and in
both popularity and payoffs are almost the same. Similar behaviour is observed for the
attractiveness function delayed in popularity and the non-delayed one.

It is worthy of observation that a significant decrease in the rate of convergence to the
equilibrium level for the attractiveness function with delay in popularity and in both factors
occurs. In Figure 5.1, the trajectories obtained for s = 41

2 are presented. For greater values
of sensitivity the slowdown is more pronounced. The trajectory of solutions to the evolution
equation with attractiveness function delayed in popularity or in both factors needs more
than 400 units of time to reach the equilibrium level for the sensitivity s = 10 (Fig. 5.1 (b)).
The delay in payoffs has a minor influence on the rate of convergence.

The notation in figures is as follows: ”no lag” – no delays, ”pay lag” – delay in popularity,
”pop lag” – delay in payoffs, ”pay pop lag” – delays of the same value in both factors.

(a) α = 0.2, β = 0.1 (b) α = 0.02, β = 0.8

Figure 5.1: The trajectories of solutions to the evolution equation (2.2) with delays for a
Prisoner’s Dilemma game with the following parameters: [R,S, T, P ] = [4, 2, 5, 3], τ = 3.

5.2.2. Coordination game

Let us consider a coordination game with payoff matrix [R,S, T, P ] = [2, 1, 1, 2]. Dy-
namics of the evolution equation without delays for such a game was analyzed in [2]. The
author checked that for s > 3, there exist two stable mixed equilibria and an unstable mixed
equilibrium, which is easy to calculate and equals p∗ = 0.5.

From numerical investigations, it appears that delays may have an important influence
on the dynamics of the evolution equation. Figure 5.2 depicts the relevant trajectories of
solutions for the considered coordination game and different sensitivity parameters i.e. s = 41

2
(Fig. 5.2 (a)) and s = 10 (Fig. 5.2 (b)). We note that for greater sensitivity parameter,
the slowdown of convergence rate for the trajectories of solutions to evolution equations with
delay in popularity and in both factors is more significant. Similarly as in the Prisoner’s
Dilemma game, the delay in payoffs has less influence on the rate of convergence compared
to the delay in popularity or delays in both factors.
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(a) α = 0.2, β = 0.1 (b) α = 0.02, β = 0.8

Figure 5.2: The trajectories of solutions to the evolution equation (2.2) with delays for a
coordination game with the following parameters: [R,S, T, P ] = [2, 1, 1, 2], τ = 3.

5.2.3. Anti-coordination game

Now, we consider an anti-coordination game with payoff matrix [R,S, T, P ] = [1, 2, 2, 1].
In the numerical example presented in Figure 5.3, we observe that introducing delays to
the attractiveness function causes slower convergence to the equilibrium and may sometimes
include the oscillatory behaviour.

Based on Figure 5.3, we note that for the smaller sensitivity parameter s = 41
2 (Fig. 5.3

(a)), the oscillations appear for the trajectory of solution to evolution equation with delay
in payoffs. For greater sensitivity s = 10 (Fig. 5.3 (b)), the oscillations of this trajectory
disappear and the slowdown of convergence is not significant. The behaviour of trajectories
for the attractiveness function with delays in popularity or in both popularity and payoffs is
similar. The convergence rate is significantly slowed and this is even more pronounced for
the greater sensitivity parameter s = 10.

(a) α = 0.2, β = 0.1 (b) α = 0.02, β = 0.8

Figure 5.3: The trajectories of solutions to the evolution equation (2.2) with delays for an
anti-coordination game with the following parameters: [R,S, T, P ] = [1, 2, 2, 1], τ = 3.
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(a) τ = 4 (b) τ = 5

Figure 5.4: The trajectories of solutions to the evolution equation (2.2) for a Snow-Drift game
with the following parameters: [R,S, T, P ] = [2, 1, 3, 0], α = 0.02, β = 0.2.

Let us now focus on the anti-coordination game called the Snow Drift game. Payoffs of
such game satisfy the conditions T > R > S > P (see Appendix A.1).

From numerical investigations for the Snow Drift game with payoff matrix [R,S, T, P ] =
[2, 1, 3, 0], we can observe that delays added to payoffs in the attractiveness function lead
to interesting results. For example, for τ = 4 and sensitivity s = 40, damped oscillations
appear, see Figure 5.4 (a). However, if the delay is increased to τ = 5, the oscillations do
not damp, Figure 5.4 (b) (calculations were performed for t = 1000). In Figure 5.5, graphs
for the smaller value of sensitivity parameter s = 8 are presented. For τ = 5 (Fig. 5.4 (a)),
the trajectories still have the form of damping oscillations. However, if we raise the delay to
τ = 6 ((Fig. 5.4 (b), the oscillations do not damp.

It is worth noting that for delays in popularity or both in popularity and payoffs, the
delays only lead to the slower convergence to the equilibrium level and do not cause the
oscillations.

(a) τ = 5 (b) τ = 6

Figure 5.5: The trajectories of solutions to the evolution equation (2.2) for a Snow Drift game
with the following parameters: [R,S, T, P ] = [2, 1, 3, 0], α = 0.1, β = 0.2.
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In Figure 5.6, the approximate relation between values of sensitivity and delays and the
oscillatory behaviour of trajectories of solution to the evolution equations with attractiveness
function delayed in payoffs (5.2) for the Snow Drift game with payoff matrix [R,S, T, P ] =
[2, 1, 3, 0] is depicted. Green points denote damping oscillations, while the red ones denote
constant oscillations.

Based on Figure 5.6, we can formulate the hypothesis regarding delays added to payoffs
in attractiveness function for the considered Snow Drift game.

• For a fixed sensitivity, we can destabilize the equilibrium, if we increase the delay.
However, for small values of sensitivity parameter, even large τ does not destabilize the
equilibrium.

• For a fixed delay, we can destabilize the equilibrium, if we increase the sensitivity
parameter. However, for small values of delay, even large sensitivity does not destabilize
the equilibrium.

It should be stressed that the replicator model can be obtained from our model with
attractiveness function by assuming the infinite sensitivity i.e. s → ∞. It means that our
model may behave in some cases in ”less sensitive” way and the equilibrium may be stable,
although in the replicator model it is unstable.

Figure 5.6: Graph presenting the relation between values of sensitivity and delays and
the oscillatory behaviour of trajectories of solution to the evolution equations with at-
tractiveness function delayed in payoffs (5.2) for the Snow Drift game with payoff matrix
[R,S, T, P ] = [2, 1, 3, 0]. Green points denote damping oscillations and the red ones denote
constant oscillations.

5.3. Rock-Paper-Scissors game

The evolution equations for the Rock-Paper-Scissors game and the attractiveness function
with delays in different factors (popularity, payoffs, both popularity and payoffs) are presented
below. Let us introduce the following notation: f τ = f(t − τ), f = f0 = f(t) and pτ3 =
1− pτ1 − pτ2 .
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A. No delay
Analysis of this equation was presented in Chapter 3 (see 3.5).

ṗ1 =(p1)1−α(p1 + Lp2 + V p3)1−β − p1[(p1)1−α(p1 + Lp2 + V p3)1−β+
+ (p2)1−α(V p1 + p2 + Lp3)1−β + p1−α

3 (Lp1 + V p2 + p3)1−β]
ṗ2 =(p2)1−α(V p1 + p2 + Lp3)1−β − p2[(p1)1−α(p1 + Lp2 + V p3)1−β+

+ (p2)1−α(V p1 + p2 + Lp3)1−β + (p3)1−α(Lp1 + V p2 + p3)1−β]

B. Delay in popularity
Popularity of strategies at time t will impact the rate of growth τ time later.

ṗ1 =(pτ1)1−α(p1 + Lp2 + V p3)1−β − p1[(pτ1)1−α(p1 + Lp2 + V p3)1−β+
+ (pτ2)1−α(V p1 + p2 + Lp3)1−β + (1− pτ1 − pτ2)1−α(Lp1 + V p2 + p3)1−β]

ṗ2 =(pτ2)1−α(V p1 + p2 + Lp3)1−β − p2[(pτ1)1−α(p1 + Lp2 + V p3)1−β+
+ (pτ2)1−α(V p1 + p2 + Lp3)1−β + (1− pτ1 − pτ2)1−α(Lp1 + V p2 + p3)1−β]

(5.4)

C. Delay in payoffs
Payoff acquired at time t will impact the rate of growth τ time later.

ṗ1 =(p1)1−α(pτ1 + Lpτ2 + V pτ3)1−β − p1[(p1)1−α(pτ1 + Lpτ2 + V pτ3)1−β+
+ (p2)1−α(V pτ1 + pτ2 + L(1− pτ1 − pτ2))1−β + (p3)1−α(Lpτ1 + V pτ2 + pτ3)1−β]

ṗ2 =(p2)1−α(V pτ1 + pτ2 + Lpτ3)1−β − p2[(p1)1−α(pτ1 + Lp2τ + V pτ3)1−β+
+ (p2)1−α(V pτ1 + pτ2 + Lpτ3)1−β + (p3)1−α(Lpτ1 + V pτ2 + pτ3)1−β]

(5.5)

D. Delay both in popularity and payoffs
Asymmetric time delays τ1 and τ2 are added in both factors (popularity and payoffs).

ṗ1 =(pτ1
1 )1−α(pτ2

1 + Lpτ2
2 + V pτ2

3 )1−β − p1[(pτ1
1 )1−α(pτ2

1 + Lpτ2
2 + V pτ2

3 )1−β+
+ (pτ1

2 )1−α(V pτ2
1 + pτ2

2 + Lpτ2
3 )1−β + (pτ1

3 )1−α(Lpτ2
1 + V pτ2

2 + pτ2
3 )1−β]

ṗ2 =(pτ1
2 )1−α(V pτ2

1 + pτ2
2 + Lpτ2

3 )1−β − p2[(pτ1
1 )1−α(pτ2

1 + Lpτ2
2 + V pτ2

3 )1−β+
+ (pτ1

2 )1−α(V pτ2
1 + pτ2

2 + Lpτ2
3 )1−β + (pτ1

3 )1−α(Lpτ2
1 + V pτ2

2 + pτ2
3 )1−β]

(5.6)

In Figure 5.7, the trajectories of solutions to the evolution equations (3.5) with delays for
some particular values of parameters are presented. We assume that α = β = 0.2 and V = 2
and L = 0 (standard Rock-Paper-Scissors game).

We start the investigations from τ = 0.5. For this value of delay, all delayed trajectories
approaches quickly the stable equilibrium p∗ = (1

3 ,
1
3). With increasing value of delay, the

trajectories for attractiveness function with delays added in popularity or in both factors
remain almost unchanged compared to Figure 5.7 (a). For investigated values of delays,
these trajectories always approaches the stable point p∗ = (1

3 ,
1
3). For delay introduced in

payoffs, the trajectories of solutions exhibit a very interesting behaviour. For smaller values
of delay, we can observe oscillations (Fig. 5.7 (b)) and finally, for τ = 0.9 (Fig. 5.7 (c)), the
trajectory approaches a limit cycle. For the greater values of delay, the limit cycle enlarges
and approaches the boundary of the simplex.

It is worth noting that for general Rock-Paper-Scissors game with different parameters
V , L, α and β, the behaviour of trajectories may be different and further research should be
conducted. Example graphs are presented in Figure 5.7.
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(a) τ = 0.5 (b) τ = 0.8

(c) τ = 0.9 (d) τ = 1

(e) τ = 1.1 (f) τ = 2

Figure 5.7: The trajectories of solutions to the evolution equations (3.4) for a Rock-Paper-
Scissors game with the following parameters: α = 0.2, β = 0.2, V = 2, L = 0, p1(0) = 0.5,
p2(0) = 0.2.
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Chapter 6

Two-person asymmetric games with
two strategies

In this chapter, we consider two-person asymmetric games with two strategies. Games are
played between members of two populations and players from each population have different
personality profiles.

6.1. General model
At first, let us introduce the relevant payoff matrix. We assume that the row player

belongs to the population 1 and the column player belongs to the population 2. Members of
each of two populations choose between two strategies A and B. The payoff matrix has the
following form

A B
A (a1, a2) (b1, b2)
B (c1, c2) (d1, d2)

(6.1)

where ai, bi, ci, di > 0, i = 1, 2. If the row player chooses the strategy A and the column
player chooses B, then they get payoffs b1 and b2 respectively. Let us denote by xi the fraction
of population i that plays strategy A, i = 1, 2. (αi, βi) describes the personality profiles of
the individuals in population i.

We define uij as the attractiveness of the strategy j = {A,B} in population i ∈ {1, 2}

uiA = x1−αi
i ν1−βi

Ai

uiB = (1− xi)1−αiν1−βi
Bi

.

where νji is the mean payoff of strategy j in population i.
Payoffs in population 1 equal

νA1 = a1x2 + b1(1− x2)
νB1 = c1x2 + d1(1− x2)

and payoffs in population 2 are as follows

νA2 = a2x1 + c2(1− x1)
νB2 = b2x1 + d2(1− x1).
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The approach we use is similar to the one presented in previous chapters. However, let
us note that in the case of asymmetric games, the social factor (popularity) depends on
the composition of the considered population, whereas the economic factor (payoff) depends
on the composition of the other population. Hence, members of each population determine
their strategy observing the popularity of the available strategies in their own population and
payoffs from the interactions with members of the other population.

The evolution equations take the form ẋ1 = u(u
1
A

u
− x1) = u1

A − x1(u1
A + u1

B) = (1− x1)u1
A − x1u

1
B

ẋ2 = (1− x2)u2
A − x2u

2
B

(6.2)

where u = u1
A + u2

B. After substituting u1
A, u1

B, u2
A and u2

B values into the system (6.2), the
dynamics for asymmetric games is as follows ẋ1 = (1− x1)x1−α1

1 ν1−β1
A1

− x1(1− x1)1−α1ν1−β1
B1

ẋ2 = (1− x2)x1−α2
2 ν1−β2

A2
− x2(1− x2)1−α2ν1−β2

B2
(6.3)

It is worth observing that for αi = βi = 0, i = 1, 2, we can obtain the standard replicator
equation for asymmetric games{

ẋ1 = (1− x1)x1νA1 − x1(1− x1)νB1

ẋ2 = (1− x2)x2νA2 − x2(1− x2)νB2

Let us find the critical points of the system (6.3). The pure equilibria i.e. pairs of (x1, x2)
such that x1, x2 ∈ {0, 1} are easy to determine: (0, 0), (0, 1), (1, 0), (1, 1). In order to find
mixed equilibria, we can substitute zi = xi

1−xi , i = 1, 2. Then the system (6.3) takes the form ż1 = z1−α1
1 (1 + z1)α1 ν

1−β1
A1

− z1(1 + z1)α1 ν
1−β1
B1

ż2 = z1−α2
2 (1 + z2)α1 ν

1−β1
A2

− z2(1 + z2)α2 ν
1−β2
B2

(6.4)

We obtain that the critical points of (6.4) z∗ = (z∗1 , z∗2) satisfy the following conditions:

z∗1 = (a1z
∗
2 + b1

c1z∗2 + d1
)s1 and z∗2 = (a2z

∗
1 + b2

c2z∗1 + d2
)s2

where si = 1−βi
αi

is the sensitivity parameter for players in population i, i = 1, 2.

Theorem 8. System (6.3) does not have periodic solutions.

Proof. We can consider the equation (6.4) since the stability properties of solutions of (6.4)
are the same as solutions of (6.3).

We use Dulac’s Criterion, which is recalled in Appendix A.3. Let us define a function

φ(z1, z2) = [z1(1 + z1)α1z2(1 + x2)α2 ]−1.

Applying Dulac’s Criterion we get

∂(φż1)
∂z1

+ ∂(φż2)
∂z2

= −
α1z

−(α1+1)
1 ν1−β1

A1

z2(1 + z2)α2
−
α2z

−(α2+1)
2 ν1−β2

A2

z1(1 + z1)α1
< 0

for z1, z2 > 0.

44



6.1.1. Coordination and anti-coordination games

Let us consider a pure asymmetric coordination game with bi = ci = 0, ai 6= 0, di 6= 0,
i = 1, 2. For a1 > d1 and a2 < d2, it corresponds to the well-known Battle of the Sexes game
(see Appendix A.1). The payoff matrix is as follows

A B
A (a1, a2) (0, 0)
B (0, 0) (d1, d2)

(6.5)

The below theorem was proved in [7].

Theorem 9. If s1s2 6= 1, then there exists a mixed equilibrium z∗ = (z∗1 , z∗2) for the dynamics
(6.4) and payoff matrix (6.5):

z∗1 = (a1a
s2
2

d1d
s2
2

)
s1

1−s1s2 and z∗2 = (a
s1
1 a2
ds1

1 d2
)

s2
1−s1s2 .

The above mixed equilibrium is locally asymptotically stable if s1s2 < 1 and unstable, if
s1s2 > 1. If s1s2 = 1, then for

• (a1
d1

)s1 a2
d2
s2 6= 1 the mixed equilibrium does not exist

• (a1
d1

)s1 a2
d2
s2 = 1 there exists a family of mixed equilibria z∗1 = c, z∗2 = (ca2

d2
)s2, where c is

a positive constant.

Similar theorem was obtained in [7] for an asymmetric anti-coordination game with the
following payoff matrix

A B
A (0, 0) (b1, b2)
B (c1, c2) (0, 0)

(6.6)

Theorem 10. If s1s2 6= 1, then there exists a mixed equilibrium z∗ = (z∗1 , z∗2) for the dynamics
(6.4) and payoff matrix (6.6):

z∗1 = (b1c
s2
2

c1b
s2
2

)
s1

1−s1s2 and z∗2 = (c
s1
1 b2
bs1
1 c2

)
s2

1−s1s2 .

The above mixed equilibrium is locally asymptotically stable if s1s2 < 1 and unstable, if
s1s2 > 1. If s1s2 = 1, then for

• ( b1
c1

)s1 c2
b2
6= 1 the mixed equilibrium does not exist

• ( b1
c1

)s1 c2
b2

= 1 there exists a family of mixed equilibria z∗1 = c, z∗2 = ( b2
c2

)s2, where c is a
positive constant.

6.2. Nonconformist preferences
In this section, we focus on a two-person asymmetric game with two nonconformist pref-

erences. In such a case, the attractiveness functions for strategies A and B respectively
equal

uiA = (1− xi)1−αiν1−βi
Ai

uiB = x1−αi
i ν1−βi

Ai
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where i = 1, 2. The evolution equations are as follows ẋ1 = (1− x1)(1− x1)1−α1ν1−β1
A1

− x1x
1−α1
1 ν1−β1

B1
= (1− x1)2−α1ν1−β1

A1
− x2−α2

1 ν1−β1
B1

ẋ2 = (1− x2)2−α2ν1−β2
A2

− x2−α2
2 ν1−β2

B2

(6.7)

After substituting zi = xi
1−xi to (6.7), we get the following system ż1 = (1 + z1)α1ν1−β1

A1
− z2−α1

1 (1 + z1)α1ν1−β1
B1

ż2 = (1 + z2)α2ν1−β2
A2

− z2−α2
2 (1 + z2)α2ν1−β2

B2

(6.8)

We want to find the equilibrium z∗ = (z∗1 , z∗2) of the system (6.8) i.e. a point for which the
right hand sides of these equations are equal to zero. After straightforward transformations,
we obtain

z∗i = (vAi
vBi

)
1−βi
2−αi

where i = 1, 2.
Let us consider now the payoff matrix of the coordination game (6.5). Then, payoffs from

choosing strategy A or B by players from population 1 are equal to

νA1 = a1z2
1 + z2

and νB1 = d1
1 + z2

.

The evolution equations take the form
ż1 = (1 + z1)α1( a1z2

1 + z2
)1−β1 − z2−α1

1 (1 + z1)α1( d1
1 + z2

)1−β1

ż2 = (1 + z2)α2( a2z1
1 + z1

)1−β2 − z2−α2
2 (1 + z2)α2( d2

1 + z1
)1−β2

(6.9)

The critical point of the system (6.9) can be easily computed

z∗ = ((a1
d1

(a2
d2

)s̃2)
s̃1

1−s̃1s̃2 , (a2
d2

(a1
d1

)s̃1)
s̃2

1−s̃1s̃2 )

where s̃i = 1−βi
2−αi , i = 1, 2.

Now, we linearize the system (6.9). Let us denote by

f1(z1, z2) = (1 + z1)α1( a1z2
1 + z2

)1−β1 − z2−α1
1 (1 + z1)α1( d1

1 + z2
)1−β1

f2(z1, z2) = (1 + z2)α2( a2z1
1 + z1

)1−β2 − z2−α2
2 (1 + z2)α2( d2

1 + z1
)1−β2

and calculate the partial derivatives of f1(z1, z2)

∂f1
∂z1

= −( d1
1 + z2

)1−β1(1 + z1)α1z11− α1(2− α1)

∂f1
∂z2

= (1 + z1)α1z−1
2 (1− β1)( a1z2

1 + z2
)1−β1 .

We can calculate the partial derivatives of f2(z1, z2) similarly. The linearization matrix of
the system (6.9) at the point z∗ has the form −( d1

1+z∗
2
)1−β1(1 + z∗1)α1(z∗1)1−α1(2− α1) (1 + z∗1)α1(z∗2)−1(1− β1)( a1z∗

2
1+z∗

2
)1−β1

(1 + z∗2)α2(z∗1)−1(1− β2)( a2z∗
1

1+z∗
1
)1−β2 −( d2

1+z∗
1
)1−β2(1 + z∗2)α2(z∗2)1−α2(2− α2)


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Both eigenvalues of the linearization matrix have negative real parts if and only if the de-
terminant of the linearization matrix is positive and the trace of this matrix is negative (see
Appendix A.4). In our case, it is clear to see that trace of the matrix is always negative.
Determinant of the matrix is positive, when

s̃1s̃2 < (z∗1)2(1−α1)(z∗2)2(1−α2). (6.10)

After substituting z∗1 and z∗2 values into the inequality (6.10), we can state that the mixed
equilibrium is locally asymptotically stable if and only if the parameters s̃1s̃2 6= 1 and s̃1, s̃2,
α1, α2 satisfy the following condition

s̃1s̃2 < [a1
d1

(a2
d2

)s̃2 ]
2s̃1(1−α1)

1−s̃1s̃2 [a2
d2

(a1
d1

)s̃1 ]
2s̃2(1−α2)

1−s̃1s̃2 .

We can also prove that in the case of asymmetric games, there are no periodic solutions.
We will use the Dulac’s Criterion, similarly as in Section 6.1.

Theorem 11. System (6.7) does not have periodic solutions.

Proof. Similarly as earlier, we can consider the equation (6.8) since the solutions to this
equation have the same stability properties as the solutions of (6.7).

Let us define a function φ(z1, z2) = [(1 + z1)α1(1 + z2)α2 ]−1 and calculate relevant partial
derivatives:

∂(φż1)
∂z1

= −(2− α1)z1−α1
1 ν1−β1

B1
(1 + z2)−α2

∂(φż2)
∂z2

= −(2− α2)z1−α2
2 ν1−β2

B1
(1 + z1)−α1

Applying Dulac’s criterion we get that

∂(φż1)
∂z1

+ ∂(φż2)
∂z2

< 0⇔ α1 < 2 and α2 < 2.

These conditions are always satisfied, as we assume that αi ∈ [0, 1], i = 1, 2.
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Conclusions

The aim of my thesis was to study evolutionary dynamics of populations of individuals
with complex personality profiles. The dynamics was described using the idea of the attrac-
tiveness function that reflects the broader spectrum of social interactions, compared to the
standard replicator dynamics. All of the results were obtained for infinite populations with
random pairwise matching.

After brief characterization of the general idea behind the proposed model and introduc-
ing attractiveness function, two-person symmetric games with two strategies were analyzed
(Prisoner’s Dilemma, coordination and anti-coordination games). Then the two-person sym-
metric games with three strategies were considered (mainly the Rock-Paper-Scissors game).
In next chapters, we expanded the model by modifying the attractiveness function. We in-
corporated to this function not only popularity and payoffs, but also other factors, namely a
constant, transcendent factor, rate factor that takes into account rate of change in popularity
and selection potential, which includes the variance of payoffs. Such a general attractiveness
function may better reflect the mechanisms that govern the decision making of individuals.
The concept of nonconformist preferences was also introduced and some analytical results
were obtained.

The important part of this work concerned delays introduced to the attractiveness func-
tion. We checked how the delays may influence the dynamics in various games with two
strategies (Prisoner’s Dilemma game, coordination and anti-coordination games), as well as
in games with three strategies (Rock-Paper-Scissors game, Weak Iterated Prisoner’s Dilemma
game). As expected, it appeared that delays may have a strong impact on the dynamics of our
model. It is worth stressing that the chapter regarding delays is preliminary and exploratory.

Further, we introduced the two-person asymmetric games with two strategies and proved
using the Dulac’s criterion that in such a situation there are no periodic solutions under given
dynamics. We also formulated theorems concerning particular types of games, namely the
coordination and anti-coordination games.

The presented model can serve to explain some theoretical and sociological problems.
Apart from structural simplicity of games, they may cover complex individual behaviour,
motivation of agents and rules of searching for stable solutions. Obviously, there is a need
for further investigation of the model. Many interesting problems connected, for instance,
with a special dynamics for some values of parameters, have appeared in this work. Based
on numerical calculations, we can observe strange dynamics that may be connected with
existence of a secondary fold bifurcation. The second important problem concerns introducing
delays to the attractiveness function and their influence on the dynamics. There is also a
possibility to expand the concept of asymmetric games, consider changing personalities of
the actors during the interactions or models with finite number of heterogeneous agents with
different personality profiles. As it is mentioned above, there are various open problems
related to the presented research and they may become an interesting topic of the future
work in this field.
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Appendix

A.1 Brief descriptions of games with two strategies

In this section, the brief descriptions of games that have been mentioned earlier are
presented. In the symmetric games described below, individuals choose from two strategies
C and D, and the payoff matrix [R,S, T, P ] has the following form

C D
C R S
D T P

where R,S, T, P ≥ 0.

1. Prisoner’s Dilemma
A Prisoner’s Dilemma game is one of the most often analyzed games. In this game,
payoffs have to satisfy the following conditions

T > R > P > S.

If T > R > P = S, then such a game is called Weak Prisoner’s Dilemma game.
Pair (D,D) is the only pure Nash equilibrium i.e. such a set of strategy choices, when
each player has chosen a strategy and no player can benefit by changing his or her
strategy unilaterally. The Prisoner’s Dilemma game does not have any mixed equilibria
under the standard replicator dynamics i.e. there are no stable solutions with nonzero
frequency of cooperators and defenders.
The name of this game derives from a story about two prisoners.
Two persons are suspected of committing a crime and are being interrogated in two
separate rooms. They cannot communicate. Both of them want to minimize their jail
sentence. Investigators do not have enough proofs to sentence both of them and offer
both a similar deal – if one testifies against his partner i.e. defects and chooses D and
the other remains silent i.e. cooperates and chooses C, the betrayer goes free and the
cooperator receives the five-year sentence. If both remain silent, both are sentenced to
only one year in jail for a minor charge. If each betray the other, each receives a three
year sentence. Each prisoner must choose either to betray or remain silent.
In this situation, the payoff matrix is as follows

C D
C 3 0
D 5 1
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2. Coordination game
In a coordination game payoffs satisfy the following conditions

R > T and P > S.

Coordination games are a class of games with two pure Nash equilibria. This type
of games illustrate a problem of coordination i.e. situations in which both agents can
realize mutual aims, but only by making consistent decisions.
Pairs (C,C) and (D,D) are pure Nash equilibria. Coordination games also have mixed
equilibrium, which is unstable under the replicator dynamics.
A typical example of the coordination game is a game, when players choose the side of
the road upon which to drive.
Assume that two drivers meet on a narrow road. Both have to swerve in order to avoid
a head-on collision. If both of them execute the same swerving maneuver, they will
manage to avoid the collision, but if they choose different maneuvers they will collide.
In the below payoff matrix, successful choice is represented by a payoff of 10, and a
collision by a payoff of 0

C D
C 10 0
D 0 10

• Stag Hunt
A Stag Hunt game is an example of the coordination game, but with the additional
condition T ≥ P . The name of this games derives from the story about hunting.
Two agents decide to hunt for hares or stag, which has the greater value for them
than hares. Their decisions are simultaneous and independent. The only way to
successfully hunt the stag is to work together, so both of them should choose C. If
one of the hunters focuses on the stag and the other focuses on a hare, so one of
them chooses C and the other D, then the first one will end up with nothing and
the second one will end up with two hares. If both individuals hunt for hares, so
both chooses D, then each will kill one hare.
The payoff matrix is as follows

C D
C 2 0
D 1 1

• Battle of the Sexes
A Battle of the Sexes game is a two-player asymmetric coordination game that
describes the following scenario:
A couple is meeting this evening, but cannot recall whether they decided to attend
a ballet (strategy C) or a football match (strategy D). The wife would prefer to
see the ballet. The husband would like to see the football match. Both of them
would prefer to go to the same place. The game is asymmetric since the payoff
obtained for attending ballet is smaller for husband than for wife and analogously
for a football match.
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An example payoff matrix is given below. The wife is a row player and the husband
chooses a column. In each cell, the first number represents the payoff to the wife
and the second number represents the payoff to the husband.

C D
C 3, 2 0, 0
D 0, 0 2, 3

3. Anti-coordination game
In an anti-coordination game, payoffs satisfy the following conditions

T > R and S > P.

The anti-coordination problem is opposite to the previous one. Here, both players
benefit from choosing opposite decisions.
The game has two pure Nash equilibria i.e. (C,D) and (D,C) and one mixed equilib-
rium, which is stable under replicator dynamics.

• Snow Drift
To get a Snow-Drift game, payoffs have to satisfy the following conditions

T > R > S > P.

The name of this game derives from the following story:
Two drivers are trapped on two different sides of a snowdrift. Cooperation means
to get out of the car and shovel. Removing the snowdrift costs c. If both drivers
cooperate, then the cost of shoveling is c/2. Defection means to remain in the car
and wait till the other one do the work. If at least one of the drivers cooperates,
then both gain the benefit b of getting home. It is assumed that b > c.
The payoff matrix of this game for b = 4, c = 2 is

C D
C 3 2
D 4 0

A.2 Delay differential equations
The classical model based on the ordinary differential equations assumes that in a given

moment of time the reaction of system is immediate and depends on the state of the system
in this moment i.e. y′(t) = f(t, y(t). However, there are situations, when such an assumption
is unrealistic. Thus, it is reasonable to take into account the fact that the derivative of the
solution may depend not only on the current situation, but also on the state of the system
in earlier moments.

In this work, we focus on the autonomous delay differential equations with the initial
condition that is a constant function. The full definition of delay differential equations is
very expanded and formal, and it is not the subject of this thesis. Therefore, only the brief
description is provided below. Interested readers can find the complete information about
delay differential equations with precise explanation in [4].

Let X be an arbitrary space and ϕ an arbitrary function defined on some segment I that
takes values in X. Moreover let τ be a finite real number and τ ∈ I.

53



Definition. For each t ∈ I ⊂ R we define a function ϕt : [−τ, 0]→ X in the following way

ϕt(s) = ϕ(s+ t) for each s ∈ [−τ, 0].

Definition. The following system is called the system of differential equations with delay

ẋ(t) = F (t, x(t− τ)) for t ≥ t0, (7.1)

where

• x(t) ∈ Rn

• F : [b,+∞)× C → Rn is a given function, b is an arbitrary real number, t0 ≥ b and C
is a Banach space of continuous functions defined on interval [−τ, 0] and taking values
in Rn with the standard supremum norm i.e. C = C([−τ, 0];Rn).

The initial condition for the system (7.1) is

x(t) = ϕ(t− t0) for t ∈ [t0 − τ, t0].

where ϕ ∈ C.

In the most common situations, increasing the delay results in destabilization. However,
it should be remembered that sometimes the situation may be different. Although, the stable
state usually loses its stability with increasing delay, it may also happen that the unstable
gains the stability. The oscillations and periodic solutions may also appear. In [4], it was
proved that for one equation with only one discrete delay τ , the increase of τ can only
destabilize the stationary state.

In general, different scenarios of the influence of a discrete delay on the stationary state
are possible:

• the delay has no effect on the stability of the stationary state

• sufficiently large delay destabilizes the stationary state which is stable without the delay

• the appropriate values of delay stabilizes the stationary state which is unstable without
the delay.

There are theorems concerning existence and uniqueness of solutions to the delay differ-
ential equations. They are similar to theorems formulated for ordinary differential equations.
Let us consider

ẋ(t) = F (t, xt) for t ≥ t0 (7.2)
x(t) = ϕ(t− t0) for t ∈ [t0 − τ, t0], ϕ ∈ C (7.3)

Theorem 12. (Existence of solutions) Let Ω be an open subset Rn×C and let the function
F be a continuous function defined on Ω. Then for each point (t0, ϕ) ∈ Ω, there exists a local
solution of equation (7.2) with the given initial condition.

Theorem 13. (Uniqueness of solutions) Let Ω be an open subset Rn × C and let F be
a continuous function defined on Ω and satisfying the Lipschitz condition with respect to the
second variable on each compact subset of Ω. Then for each point (t0, ϕ) ∈ Ω, the solution of
equation (7.2) with the given initial condition is unique.
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A.3 Criteria for excluding periodic orbits
A periodic orbit corresponds to the solution of a dynamical system, which repeats itself in

time. It is sometimes possible to prove analytically that a periodic orbit does not exist using
the Bendixson’s and Dulac’s criteria. They apply for an autonomous planar vector field

dx

dt
= F (x, y)

dy

dt
= G(x, y)

where (x, y) ∈ R2.

Theorem 14. (Bendixon’s criterion) Let D be a simply connected region D ⊂ R2. If

∂F

∂x
+ ∂G

∂y

is not identically zero and does not change sign in D, then there are no periodic orbits lying
entirely in D.

Theorem 15. (Dulac’s criterion) Let B(x, y) be a scalar function defined on a simply
connected region D ⊂ R2. If

∂(BF )
∂x

+ ∂(BG)
∂y

is not identically zero and does not change sign in D, then there are no periodic orbits lying
entirely in D.

Dulac’s criterion is a generalization of Bendixson’s criterion, which corresponds to the
function B(x, y) ≡ 1.

A.4 Characteristic polynomial
Let us focus on a linear system of two differential equations with constant coefficients.

We consider the homogeneous linear equation

ẋ = Ax (7.4)

with a constant matrix
A =

(
a11 a12
a21 a22

)
The critical point of the equation (7.4) is x∗ = 0. Assume that detA 6= 0. Let us consider
the characteristic polynomial of the matrix A

det(A− λI) = det( a11 a12
a21 a22

) = (a11 − λ)(a22 − λ)− a21a12 =

= λ2 − (a11 + a21)λ+ (a11a22 − a12a21)

where I is the identity matrix. Hence, the characteristic polynomial w(λ) can be written in
the form

w(λ) = λ2 − (trA)λ+ detA.
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The characteristic values of the matrix A equal:

λ1 = 1
2(trA+

√
∆) and λ2 = 1

2(trA−
√

∆)

where ∆ = (trA)2 − 4detA.
To have the stability of the critical point x∗, real parts of both eigenvalues have to be

smaller than 0. Using Vieta’s formulas, it can be easily checked, when the real parts of the
eigenvalues are negative. The sum and the multiplication of characteristic values λ1, λ2 have
to satisfy the following conditions

λ1 + λ2 = −b
a

= trA

λ1λ2 = c

a
= detA

Therefore, in order to have both real parts of eigenvalues negative, the trace of matrix A has
to be negative and the determinant of matrix A has to be positive.
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