LECTURE 1, 17/02/2012

- 1. INTRODUCTION
 - Instructor: Piotr Eliasz, language: English
 - Wednesday 9-10 (confirm by email peliasz@mimuw.edu.pl)
 - Bibliography:
 - "Estimation and Inference in Econometrics", R. Davidson and J. G. MacKinnon \heartsuit
 - "Econometric Theory and Methods", R. Davidson and J. G. MacKinnon, Oxford University Press (New York)
 - "Advanced econometrics", Takeshi Amemiya
 - "Econometrics", Fumiohayashi
 - "Probability and Random Processes", G. R. Grimmett, D. R. Stirzaker
 - A course is designed to familiarize students with statistical methods employed in analysis of economic and financial data. Emphasis will be places on a thorough review of statistical techniques employed in small and large sample inference. Specifically, we will start with a review of matrix algebra and probability. Next, we will cover the following concepts: standard linear model in small and large samples, violations of assumptions; maximum likelihood estimation; generalized method of moments.
 - Grading: final exam (50%) and take-home exercises and empirical applications (50%)
- 2. Definitions
 - Probability space $(\Omega, \mathcal{F}, \mathbb{P})$
 - Ω is a set called sample space
 - $-\mathcal{F}$ is a family of events (an event is an element of \mathcal{F}).
 - $-\mathbb{P}$ is a probability measure on $(\Omega, \mathcal{F}, \mathbb{P})$.
 - Random variable is a function $x : \Omega \to \mathbb{R}$ with a property that $\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F} \ \forall x \in \mathbb{R}$.
 - **Distribution function** of a random variable X is the function $F : \mathbb{R} \to [0, 1]$ given by $F(x) = \mathbb{P}(X \le x)$. Random variable X is **continuous** if its distribution function can be expressed as $F(x) = \int_{-\infty}^{x} f(u) du$, $x \in \mathbb{R}$ for some integrable function $f : \mathbb{R} \to [0, \infty)$.
- 3. Convergence of random variables
 - Let X_1, \ldots, X_n be random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We say that
 - $X_n \xrightarrow{a.s.} X$ almost surely if $\{\omega \in \Omega : X_n(\omega) \to X(\omega) \text{ as } n \to \infty\}$ is an event whose probability is 1.
 - $X_n \xrightarrow{r} X$ in r'th mean, where $r \ge 1$ if $\mathbb{E}|X_n^r| < \infty$ for all n and $\mathbb{E}(|X_n X|^r) \to 0$ as $n \to \infty$.
 - $X_n \xrightarrow{\mathbb{P}} X$ in probability if $\mathbb{P}(|X_n X| > \varepsilon) \to 0$ as $n \to \infty \ \forall \varepsilon > 0$.
 - $X_n \xrightarrow{D} X$ in distribution if $\mathbb{P}(X_n \leq X) \to \mathbb{P}(X \leq x)$ as $n \to \infty$ for all points at which $F_n(x) = \mathbb{P}(X \leq x)$ is continuous.
- 4. Implications
 - $X_n \xrightarrow{a.s.} X/X_n \xrightarrow{r} X \Rightarrow X_n \xrightarrow{\mathbb{P}} X \Rightarrow X_n \xrightarrow{D} X \ (r \ge 1).$
 - If $r > s \ge 1$, then $X_n \xrightarrow{r} X \Rightarrow X_n \xrightarrow{s} X$.
 - If $X_n \xrightarrow{D} c$, where c is constant, then $X_n \xrightarrow{\mathbb{P}} c$.
 - If $X_n \xrightarrow{D} X$ and $\mathbb{P}(|X_h| \le k) = 1 \ \forall h$ and some k then $X_n \xrightarrow{r} X \ \forall r \ge 1$.
 - If $\sum_{n} \mathbb{P}(|X_n X| > \varepsilon) < \infty \quad \forall \varepsilon > 0$, then $X_n \xrightarrow{a.s.} X$.
 - If $X_n \xrightarrow{\mathbb{P}} X$ then $X_n \xrightarrow{D} X$.
 - Converse is false: Let X be Bernoulli variable with parameter 1/2. Let X_1, \ldots, X_n be identical random variables given by $X_n = X \forall n$. Then $X_n \xrightarrow{D} X$. Now let Y = 1 X. Clearly $X_n \xrightarrow{D} Y$. We can't converge in any other mode as $|X_n Y| = 1$ always.

Proof. Suppose $X_n \xrightarrow{\mathbb{P}} X$. Let's write $F_n(x) = \mathbb{P}(X_n \leq x), F(x) = \mathbb{P}(X \leq x)$.

$$F_n(x) = \mathbb{P}(X_n \le x) = \mathbb{P}(X_n \le x \cap X \le x + \varepsilon) + \mathbb{P}(X_n \le x \cap X > x + \varepsilon) \le$$
$$\le F(x + \varepsilon) + \mathbb{P}(|X_n - X| > \varepsilon)(\xrightarrow{n \to \infty} 0)$$
$$F(x - \varepsilon) = \mathbb{P}(X \le x - \varepsilon) = \mathbb{P}(X \le x - \varepsilon \cap X_n \le x) + \mathbb{P}(X \le x - \varepsilon \cap X_n > x) \le$$
$$\le F_n(x) + \mathbb{P}(|X_n - X| > \varepsilon)(\xrightarrow{n \to \infty} 0)$$

So we obtain $F(x-\varepsilon) \leq \liminf F_n(x) \leq \limsup F_n(x) \leq F(x+\varepsilon) \quad \forall \varepsilon > 0$. If F is continuous at x then $F(x-\varepsilon)\uparrow F(x)$ and $F(x+\varepsilon)\downarrow F(x)$ as $\varepsilon\to 0$. Since ε is arbitrary, $F_n(x)\xrightarrow{D} F(x)$.

5. Other

• Markov's inequality

If X is any random variable with finite mean then $\mathbb{P}(|X| \ge a) \le \frac{\mathbb{E}|X|}{a}$ for any a > 0.

Proof. Let $A = \{ |X| \ge a \}$. Then $|X| \ge aI_A$, where $I_A(\omega) = 1$ if $\omega \in A$, 0 otherwise. So $\mathbb{E}|X| \ge a\mathbb{P}(|X| \ge a).$

• Skorokhod's representation theorem

If $\{X_n\}$ and X with distribution function $\{F_n\}$ and F are such that $X_n \xrightarrow{D} X$, then there exists a probability space $(\Omega', \mathcal{F}', \mathbb{P}')$ and random variables $\{Y_n\}$ and Y', which map Ω' into \mathbb{R} such that

 $- \{Y_n\}$ and Y have distribution functions $\{F_n\}$ and F

 $-Y_n \xrightarrow{a.s.} Y \text{ as } n \to \infty.$

• Corollary

If $X_n \xrightarrow{D} X$ and $g : \mathbb{R} \to \mathbb{R}$ is continuous, then $g(X_n) \xrightarrow{D} g(X)$.

Proof. By Skorokhod's there exists a sequence $\{Y_n\}$ distributed identically to $\{X_n\}$ which converges almost surely to Y, which is a copy of X. Since g is continuous $Y_n(\omega) \to Y(\omega)$ implies $g(Y_n(\omega)) \xrightarrow{a.s.}$ $g(Y(\omega)). \text{ It means that } \{\omega: Y_n(\omega) \to Y(\omega)\} \subseteq \{\omega: g(Y_n(\omega)) \to g(Y(\omega))\} \text{ and } \mathbb{P}\{\omega: Y_n(\omega) \to Y(\omega)\} = 1 \text{ (a.s. convergence), then } g(Y_n) \xrightarrow{a.s.} g(Y) \Rightarrow g(Y_n) \xrightarrow{D} g(Y) \Rightarrow g(X_n) \xrightarrow{D} g(X). \square$

6. LAWS OF LARGE NUMBERS (LLN)

Let $\{X_n\}$ be a sequence of random variables with partial sums $S_n = \sum_{i=1}^n X_i$.

• Kolmogorov's LLN

Let X_1, X_2, \ldots be independent identically distributed (i.i.d.) random variables. Then $\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{a.s.} \mu$ if and only if $\mathbb{E}|X_i| < \infty$ and $\mathbb{E}X_i = \mu$.

• Kolmogorov's LLN

Let X_1, X_2, \ldots be independent (but not identical) with $\mathbb{E}X_i = \mu_i$ and $Var X_i = \sigma_i^2$. If $\sum_{i=1}^{n} \frac{\sigma_i^2}{i^2} < \infty$ then $\frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{n} \sum_{i=1}^{n} \mu_i \xrightarrow{a.s} 0$ (or written $\bar{X}_n - \bar{\mu}_n \xrightarrow{a.s} 0$).

7. Central Limit Theorems (CLT)

• Lindeberg-Levy CLT

Let X_1, X_2, \ldots be a sequence of i.id. random variables with finite means μ and finite non-zero variances $\sigma^{2}. \text{ Let } S_{n} = \sum_{i=1}^{n} X_{i}.$ Then $\frac{S_{n} - n\mu}{\sqrt{n\sigma^{2}}} \xrightarrow{D} X \sim \mathcal{N}(0, 1) \text{ or } \sqrt{n} (\frac{1}{n} \sum_{i=1}^{n} (\frac{X_{i} - \mu}{\sigma})) \xrightarrow{D} X \sim \mathcal{N}(0, 1).$

• Lindeberg-Feller CLT

Let X_1, X_2, \ldots be a sequence of independent random variables with $\mathbb{E}X_i = \mu_i, VarX_i = \sigma_i^2 < \infty$ and distribution function F_i .

Then
$$\sqrt{n \frac{\frac{i}{n}S_n - \frac{i}{n}\sum_{i=1}^{n} \mu_i}{\sqrt{\frac{1}{n}\sum_{i=1}^{n} \sigma^2}}} \xrightarrow{D} \mathcal{N}(0,1)$$
 (random variable with normal distribution)

and $\lim_{n\to\infty} \max_{1\le i\le n} n^{-1} \left(\frac{\sigma_i^2}{\bar{\sigma}_n^2}\right) = 0$ (where $\bar{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n \sigma_i^2$). CLTs above are satisfied if and only if for any $\varepsilon > 0 \lim_{n\to\infty} \bar{\sigma}_n^{-2} n^{-1} \sum_{i=1}^n \int_{(x-\mu_i)^2 > \varepsilon n \sigma_n^2} (x-\mu_i)^2 dF_i(x) = 0$ 0 (Lindeberg condition – it restricts average contribution form tails of the distribution to the variance).

• Lyapunov's CLT

Let X_1, X_2, \ldots be a sequence of independent random variables with $\mathbb{E}X_i = \mu_i, VarX_i = \sigma_i^2, \sigma_i^2 \neq 0$ and
$$\begin{split} &\mathbb{E}|X_h - \mu_h|^{2+\delta} < M < \infty \text{ for some } \delta > 0 \ \forall h. \\ &\text{If } \bar{\sigma}_h^2 > \delta > 0 \ \forall h \text{ sufficiently large, then } \sqrt{n} \big(\frac{\frac{1}{n} S_n - \frac{1}{n} \sum_{i=1}^n \mu_i}{\sqrt{\frac{1}{n} \sum_{i=1}^n \sigma_i^2}} \big) \xrightarrow{D} \mathcal{N}(0, 1). \end{split}$$

TUTORIAL 1, 17/02/2012

1. Exercise 1

Let X, Y – Bernoulli with parameter 1/2. Consider X + Y and |X - Y|. Note

$$Cov(X+Y,|X-Y|) = \mathbb{E}[(X+Y)|X-Y|] - \mathbb{E}(X+Y)\mathbb{E}|X-Y| = \frac{1}{4} + \frac{1}{4} (only when X = 0, Y = 1 or X = 1, Y = 0) - (\frac{1}{4} + \frac{1}{4} + 2\frac{1}{4})\frac{1}{2} = 0$$

$$\begin{split} \mathbb{P}(X+Y=0,|X-Y|=0) &= \frac{1}{4} \\ \mathbb{P}(X+Y=0)\mathbb{P}(|X-Y|=0) &= \frac{1}{4} \cdot \frac{1}{2} \neq \frac{1}{4} \\ So \ correlation \ is \ 0, \ but \ variables \ are \ not \ independent. \end{split}$$

$2. \ \text{Exercise} \ 2$

Let X and Y have joint probability distribution (bivariate normal, where ρ is a constant $-1 < \rho < 1$)

$$f(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)}(x^2 - 2\rho xy + y^2)\right]$$
$$= \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)}(x-\rho y)^2\right] \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}y^2\right) = g(x,y)h(y)$$

Now, $f_Y(y) = \int_{-\infty}^{\infty} g(x,y)h(y)dx = h(y) \int_{\infty}^{\infty} g(x,y)dx = h(y) \cdot 1 \ (1 - as it's a normal density).$ By symmetry $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp[-\frac{1}{2}x^2] \ (\mathcal{N}(0,1)).$

$$Cov(X,Y) = \int \int xyf(x,y)dxdy = (only \ this, \ because \ \mu = 0)$$

=
$$\int \int xyg(x,y)h(y)dxdy = \int yh(y)[\int xg(x,y)dx]dy = \int yh(y)\rho ydy =$$

=
$$\rho \int y^2h(y)dy = \rho \cdot 1 \ (as \ variance = 1)$$

If $\rho = 0$ then $f(x, y) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}x^2) \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}y^2) = f_X(x) f_Y(y)$. So X and Y are independent.

- 3. Exercise 3
 - If $VarX = 0 \Rightarrow X$ is a constant. *Note* $\mathbb{E}(X^2) = \sum_x x^2 \mathbb{P}(X = x) = 0 \Rightarrow \mathbb{P}(X = x) = 0 \forall x \neq 0 \Rightarrow \mathbb{P}(X = 0) = 1$ $VarX = 0 \Rightarrow \mathbb{P}(X - \mathbb{E}X = 0) = 1 \Rightarrow X = constant$
 - Take $\mathbb{E}(X^2) > 0$, $\mathbb{E}(Y^2) > 0$. For $a, b \in \mathbb{R}$, let Z = aX bY $0 \le \mathbb{E}(Z^2) = a^2 \mathbb{E}(X^2) - 2ab\mathbb{E}XY + b^2 \mathbb{E}(Y^2)$ Consider its as a quadratic - if $b \ne 0$ $\Delta = 4b^2 \mathbb{E}(XY)^2 - 4\mathbb{E}(X^2)b^2 \mathbb{E}(Y^2) \le 0$ $\mathbb{E}(XY)^2 \le \mathbb{E}(X^2)\mathbb{E}(Y^2) - Cauchy-Schwartz inequality$ Note $\mathbb{E}(XY)^2 = \mathbb{E}(X^2)\mathbb{E}(Y^2)$ only if $\mathbb{P}(aX = bY) = 1$ (Z = 0) for some $a, b \in \mathbb{R}$ and $b \ne 0$.
 - From Cauchy-Schwartz $\mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)]^2 \leq \mathbb{E}[(X - \mathbb{E}X)^2]\mathbb{E}[(Y - \mathbb{E}Y)^2] = VarXVarY$ Taking square roots $|Cov(X, Y)| = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] \leq \sqrt{VarXVarY} \Rightarrow |\rho(X, Y)| = \frac{|Cov(X, Y)|}{\sqrt{VarXVarY}} \leq 1$
- 4. \Diamond EXERCISE 4

Let X_1, X_2, \ldots be a sequence of random variables with $\mathbb{E}X_t = 0$ and $Var(X_t) = \sigma_t^2 < c < \infty$. Let $corr(X_s, X_t) = \rho_{st}$. Show that if $\rho_{st} \to 0$ as $|s - t| \to \infty$ then $\bar{X}_n \xrightarrow{2} 0$ (convergence in mean-square, r = 2).

LECTURE 2, 24/02/2012

1. INTRODUCTION

- Let us consider a set of data $\{z_t\}_{t=1,...,T}$ (not necessarily a time series). Let this data be distributed as $f(z_t, \theta_0)$ (known p.d.f. probability density function), where θ_0 is the true value of parameter θ .
- In this course we will be concerned mostly with the case when $z_t = \{y_t, x_t\}, f(z_t, \theta_0)$ can be decomposed in the following way $f(z_t, \theta_0) = f_1(y_t|x_t, \theta_0)f_2(x_t, \theta_0) = f_1(y_t|x_t, \theta_{01})f_2(x_t, \theta_{02})$ and our interest is in θ_0 .
- For instance we can take a function $f_1(y_t|x_t = x, \theta_{01}) \sim \mathcal{N}(\mu(x, \theta_{01}), \sigma^2(x, \theta_0))$. For example y – income, x – consumption.
- Our interest often is in $\mathbb{E}(y_t|x_t)$.
- 2. LINEAR REGRESSION MODEL (standard linear model)

makes an assumption that this conditional expectation is linear in x i.e. $\mathbb{E}(y_t|x_t) = \beta x_t$ or in matrix notation $\mathbb{E}(Y_t|X_t) = \beta' X_t$, where $\beta = [\beta_1, \ldots, \beta_n]'$, $X_t = [X_{1t}, \ldots, X_{kt}]'$.

- An alternative way to write this is $Y_t = \beta' X_t + \mu_t$ (*), t = 1, ..., T where $\mathbb{E}(\mu_t | x_t) = 0$
- Terminology:

 Y_t – endogenous, dependent variable

- X_t exogenous, independent variable, regressors
- Remark:
- If X_t is fixed (deterministic), then $\mathbb{E}(Y_t) = \beta' X_t$ and $\mathbb{E}(\mu_t) = 0$ (it'll often be this case).
- Matrix notation

Take $Y = [y_1, \dots, y_T]'_{T \times 1}, X = \begin{bmatrix} x_{11} & \dots & x_{1k} \\ & \dots & \\ x_{T1} & \dots & x_{TK} \end{bmatrix}_{T \times K}$ (*T* observations, *K* variables), $\beta = [\beta_1, \dots, \beta_K]_{K \times 1}, \mu = [\mu_1, \dots, \mu_T]_{T \times 1}$

- We can now write (\star) as $Y = X\beta + \mu$. We have a data set X, Y and we want to make inferences about parameter β (from observed data (Y, X)). For example we can write an objective function.
- 3. Objective function Q
 - Q is such that $\hat{\beta} = \operatorname{argmin}_{\beta} Q(\beta; Y, X)$.
 - One obvious candidate for Q is a function which squares deviations of Y_t from their mean level $\beta' X_t$. $\hat{\beta} = \operatorname{argmin}_{\beta} Q(\beta)$ is an **Ordinary Least Squares estimator** (OLS). $Q(\beta) = \sum_{t=1}^{T} (y_t - \beta' X_t)^2 = (y - X\beta)'(y - X\beta)$ – matrix notation
 - First Order Conditions (FOC) for the optimization: $\frac{\partial Q}{\partial \beta}|_{\hat{\beta}} = 0 \Rightarrow -2X'Y + 2X'X\hat{\beta} = 0.$ If X'X is of ful column rank, then $\hat{\beta} = (X'X)^{-1}X'Y.$
 - Second Order Conditions (SOC) for the optimization:
 - $\frac{\partial^2 Q}{\partial \beta \partial \beta'} = 2X'X > 0 \text{ (ok, if } X'X \text{ is positive definite)}.$
 - If FOC and SOC are satisfied, then $\hat{\beta}$ will minimize $Q(\beta)$.
 - Least Square Residuals are defined by $\hat{\mu}_t = y_t - \hat{\beta}' x_t$, t = 1, ..., T or in matrix notation $\hat{\mu} = Y - X\hat{\beta}$ (#).
 - Remark 1 Residuals are orthogonal to X i.e. $X'\hat{\mu} = 0 \ (\#\#)$, where $\hat{\mu} = [\hat{\mu}_1, \dots, \hat{\mu}_T]$.

Proof. If we substitute (#) to (##) $X'\hat{\mu} = X'Y - X'X\hat{\beta} = X'Y - X'X(X'X)^{-1}X'Y = 0.$

• Remark 2

If there is a constant among regressors, then $\mathbb{I}'\hat{\mu} = 0$ (or $\sum_t \hat{\mu}_t = 0$).

- 4. STATISTICAL PROPERTIES OF OLS Assumptions
 - I X is non-stochastic and finite $T \times K$,

- II $X'X\beta$ is non-singular $\forall T \ge K$,
- III $\mathbb{E}(\mu) = 0$,
- IV $\mu \sim \mathcal{N}(0, \sigma_0^2 I),$
- V $\lim_{T\to\infty} \left(\frac{X'X}{T}\right) = Q$ is positive definite.

Under these assumptions, we have the following: (existence and uniqueness, unbiasness, BLUE, normal distribution, consistent)

- a) Under I and II $\hat{\beta}$ exists and is unique.
- b) Under I to III $\mathbb{E}(\hat{\beta}) = \beta_0$, so $\hat{\beta}$ is unbiased estimator of β_0 .

Proof. $\mathbb{E}(\hat{\beta}) = \mathbb{E}[(X'X)^{-1}X'Y] = \mathbb{E}[(X'X)^{-1}(X'X)\beta_0 + (X'X)^{-1}X'\mu] = \beta_0 + (X'X)^{-1}X'\mathbb{E}\mu = \beta_0 \text{ as}$ $\mathbb{E}\mu = 0.$

c) Under I to III $\hat{\beta}$ is the **Best Linear Unbiased Estimator** (BLUE) in a sense that the covariance matrix of any other linear unbiased estimator exceeds that of $\hat{\beta}$ by a positive definite matrix (**Gauss-Markov theorem**).

Proof. Consider another linear estimator $\tilde{\beta} = D^*Y$, where D^* does not depend on the data Y and let $D = D^* - (X'X)^{-1}X'$. With this we have:

$$\tilde{\beta} = [D + (X'X)^{-1}X']Y = [D + (X'X)^{-1}X'](X\beta_0 + \mu) = (DX + I)\beta_0 + (D + (X'X)^{-1}X)\mu$$

As X is fixed, the expected value of the second part equals 0. So far $\hat{\beta}$ is unbiased, so we must have DX = 0. Now

$$\begin{aligned} Var\tilde{\beta} &= \mathbb{E}(\tilde{\beta} - \beta_0)(\tilde{\beta} - \beta_0)' = (D + (X'X)^{-1}X')\mathbb{E}(\mu\mu')(D' + X(X'X)^{-1}) = \\ &= const \cdot \sigma^2 \cdot const = \sigma^2[(DD') + DX(X'X)^{-1} + (X'X)^{-1}X'D' + (X'X)^{-1}] = \\ &= \sigma^2(DD' + (X'X)^{-1}) = Var\hat{\beta} + \sigma^2DD' > Var\hat{\beta} \end{aligned}$$

So $\tilde{\beta}$ is a worse estimator than $\hat{\beta}$. Recall

$$\hat{\beta} = (X'X)^{-1}X'Y = (X'X)^{-1}X'X\beta_0 + (X'X)^{-1}X'\mu = \beta_0 + (X'X)^{-1}X'\mu.$$

So

$$\begin{split} Var\hat{\beta} &= \mathbb{E}[(X'X)^{-1}\mu\mu'X(X'X)^{-1}] = (X'X)^{-1}X'\mathbb{E}(\mu\mu')X(X'X)^{-1} = \\ &= \sigma^2(X'X)^{-1}X'X(X'X)^{-1} = \sigma^2(X'X)^{-1}. \end{split}$$

- d) Under I to IV $\hat{\beta} \sim \mathcal{N}(\beta_0, \sigma^2(X'X)^{-1}).$
- e) Under I to V $\hat{\beta}$ is consistent for β_0 .

Proof. We have $\hat{\beta} - \beta_0 = (X'X)^{-1}X'\mu = (\frac{X'X}{T})^{-1}(\frac{X'\mu}{T}) \xrightarrow{T \to \infty} Q^{-1} \cdot \star$. From remark above mean of \star equals 0. Let us consider the second moment

$$Var(\frac{X'\mu}{T})_{K\times K} = \mathbb{E}[(\frac{1}{T}\sum_{t}X_{t}\mu_{t})_{K\times 1,1\times 1}(\frac{1}{T}\sum_{t}X_{t}\mu_{t})' = \frac{1}{T^{2}}\sum_{t}X_{t}X_{t}'\mathbb{E}\mu_{t}^{2} = \frac{\sigma^{2}}{T}\frac{\sum_{t}X_{t}X_{t}'}{T} \xrightarrow{\mathbb{P}} 0$$

By Markov's $\frac{X'\mu}{T} \xrightarrow{\mathbb{P}} 0 \Rightarrow \hat{\beta} \xrightarrow{\mathbb{P}} \beta_0$ (by Slutsky theorem).

There exist other estimators (here – quadratic loss; other moments, absolute loss, assymetric losses).

TUTORIAL 2, 24/02/2012

1. \diamond Exercise 4 (Tutorial 1)

$$corr(X_s, X_t) = \rho_{st} = \frac{Cov(X_s, X_t)}{\sqrt{\sigma_s^2 \sigma_t^2}} = \frac{\mathbb{E}(X_t X_s)}{\sigma_t \sigma_s}$$

$$\begin{split} &So \ \mathbb{E}(X_t X_s) = \rho_{st} \sigma_s \sigma_t. \\ &We \ have \ to \ show \ that \ \rho_{st} \xrightarrow{|s-t| \to \infty} 0 \ \Rightarrow \ \bar{X}_n \xrightarrow{2} 0 \ (i.e. \ \mathbb{E}(\bar{X}_n)^2 \xrightarrow{n \to \infty} 0), \end{split}$$

$$\mathbb{E}(\bar{X}_n)^2 = \frac{1}{n^2} \mathbb{E}(X_1^2 + \dots + X_n^2) + 2\sum_{i,j=1, i \neq j}^n X_i X_j = \\ = \frac{1}{n^2} \left(\sum \mathbb{E}X_i^2 + 2\sum_{i,j=1, i \neq j}^n \rho_{ij} \sigma_i \sigma_j \right) \le \frac{1}{n^2} (nc + 2c\sum \rho_{ij}) < \\ < \frac{1}{n^2} (nc + 2c(nN + \frac{n(n-1)}{2}\varepsilon)) < \frac{1}{n^2} (n(c+2cN) + cn^2\varepsilon) = \frac{c+2cN}{n} + c\varepsilon \to 0$$

 $Because \ \rho_{st} \xrightarrow{|s-t| \to \infty} 0 \ \Leftrightarrow \ \forall \varepsilon > 0 \ \exists N \ |\rho_{st}| < \varepsilon \ if \ |s-t| > N.$

2. Exercise 1

Let X_1, X_2, \ldots be a sequence of i.i.d. (independent and identically distributed) random variables with $\mathbb{E}X_t = \mu$, $VarX_t = \sigma^2 < \infty$. Show that Lindeberg condition is satisfied

$$\lim_{n \to \infty} \bar{\sigma}_n^{-2} n^{-1} \sum_{i=1}^n \int_{(x-\mu_i)^2 > \varepsilon n \sigma_n^2} (x-\mu_i)^2 dF_i(x) = 0.$$

Note that Lyapunov condition is stronger, it is better to show the Lindeberg condition if possible. Notation: $\sigma = \sqrt{\overline{\sigma}_n^2}$.

$$\frac{\sum_{i=1}^{n} \mathbb{E}(X_i - \mu)^2 \mathbb{I}_{\{|X_i - \mu| > \varepsilon n\sigma\}}}{n\sigma^2} = \frac{n\mathbb{E}(X_1 - \mu)^2 \mathbb{I}_{\{|X_1 - \mu| > \varepsilon n\sigma\}}}{n\sigma^2} \xrightarrow[n \to \infty]{} \frac{\mathbb{E}0}{\sigma^2} = 0$$

We can use the theorem about monotone convergence, because

$$\mathbb{E}|X_1 - \mu|^2 \mathbb{I}_{\{|X_1 - \mu| > \varepsilon n\sigma\}} \le \mathbb{E}|X_1 - \mu|^2 = \sigma^2$$

3. Exercise 2 (proof of Lyapunov's CLT)

Let X_1, X_2, \ldots be a sequence of independent random variables with $\mathbb{E}X_t = \mu_t$, $VarX_t = \sigma_t^2 < \infty$ and $\mathbb{E}|X_t - \mu_t|^{2+\delta} < M < \infty$ for some $\delta > 0 \ \forall t$ and $\exists \delta' > 0$ such that $\bar{\sigma}_n^2 > \delta'$ for all n sufficiently large. Then $\sqrt{n} \frac{\bar{X}_n - \bar{\mu}_n}{\bar{\sigma}_n} \xrightarrow{D} \mathcal{N}(0, 1)$.

Hint: Try Lindeberg condition $\bar{\sigma}_n^{-2}n^{-1}\sum_{i=1}^n \mathbb{E}|X_i - \mu_i|^2 \mathbb{I}_{\{|X_i - \mu_i| > \varepsilon n\bar{\sigma}^2\}}$.

$$\begin{split} \mathbb{E}|X_i - \mu_i|^2 \mathbb{I}_{\{|X_i - \mu_i| > \varepsilon n\bar{\sigma}^2\}} &\leq \left(\mathbb{E}|X_t - \mu_t|^{2+\delta}\right)^{\frac{1}{1+\frac{\delta}{2}}} \left(\mathbb{E}\mathbb{I}_{\{|X_t - \mu_t|^2 > \varepsilon n\bar{\sigma}^2\}}\right)^{\frac{\delta}{2}} \leq \\ &\leq M \cdot \left(\mathbb{E}\mathbb{I}_{\{|X_t - \mu_t|^2 > \varepsilon n\bar{\sigma}^2\}}\right)^{\frac{\delta}{2}} \xrightarrow[1+\frac{\delta}{2}]{n \to \infty}} 0 \end{split}$$

So Lindeberg condition is satisfied. We have used facts that:

- Schwartz inequality: $\mathbb{E}|xy| \leq (\mathbb{E}|x|^p)^{\frac{1}{p}} (\mathbb{E}|y|^q)^{\frac{1}{q}}, \ \frac{1}{p} + \frac{1}{q} = 1$
- $\mathbb{P}(|X_t \mu_t|^2 > \varepsilon n \bar{\sigma}^2) \le \mathbb{P}(|X_t \mu_t|^2 > \varepsilon \delta' n) \to 0$
- 4. Exercise 3

Let $y_{n \times 1} \sim \mathcal{N}(0, I)$ and A be a symmetric, idempotent matrix of order n and rank p. Show that

- a) $y'Ay \sim \chi_p^2$,
- b) $y'A_1y$ and $y'A_2y$ are independent if and only if $A_1A_2 = 0$.

a) Since A is symmetric and idempotent we can orthogonalize this matrix i.e. $A = S\Lambda S'$ (S is the matrix of

eigenvectors), where $\Lambda = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 0 \\ & & & & 0 \end{bmatrix}$

Eigenvalues equals either 0 or 1 since A is idempotent i.e. A'A = A. There are n - p zeros and p ones in matrix Λ . Now $y'Ay = y'S\Lambda S'y = t'\Lambda t$, where t = S'y. Since $y \sim \mathcal{N}(0, I)$, we have that $t \sim \mathcal{N}(0, S'S) = \mathcal{N}(0, I)$ and therefore $t'\Lambda t = \sum_{i=1}^{n} t_i^2 \lambda_i = \sum_{i=1}^{p} t_i^2 \sim \chi_p^2$. We need Λ is an end Λ is to be independent (transformation)

b) We need A_1y and A_2y to be independent (transformation).

 $Cov(A_1y, A_2y) = \mathbb{E}(A_1yy'A_2) = A_1\mathbb{E}(yy')A_2 = A_1A_2.$

y is $\mathcal{N}(0,I)$, so $Cov(A_1y, A_2y) = 0$ is sufficient for independence. Therefore $A_1A_2 = 0$.

LECTURE 3, 02/03/2012

- 1. LINEAR REGRESSION $(y_t = \beta' x_t + \mu_t)$ CONTINUATION
 - Assumptions:
 - I X is fixed (deterministic)
 - II rank(X) = k
 - III $\mathbb{E}\mu_t = 0$, $\mathbb{E}\mu_t^2 = \sigma^2$, $\mathbb{E}\mu_t\mu_\tau = 0 \ (\forall t \neq \tau)$
 - IV $\lim_{T\to\infty} \frac{X'X}{T} = Q$ is positive definite
 - Recall $\hat{\beta} = (X'X)^{-1}X'Y$ and so $X_{T \times K}\hat{\beta}_{K \times 1} = X(X'X)^{-1}X'Y = P_XY$, where $P_X = X(X'X)^{-1}X' P_XY$ projects onto space spanned by X. $M_XX = X X(X'X)^{-1}X'X = 0$
 - Consider $M_X = I P_X = I X(X'X)^{-1}X''$. It projects onto space orthogonal to X (anihilates X).
 - Note that $P_X X = X(X'X)^{-1}X'X = X$ and $P_{AX}AX = AX(X'A'AX)^{-1}(X'A'AX) = AX$

• Geomtry of OLS (linear regression – orthogonal projection!) P_X and M_X are symmetric and idemponent that is $M_X M_X = M_X$ and $P_X P_X = P_X$, $P_X + M_X = I$. In our case $Y = \beta X + \mu$, $\hat{\beta} = (X'X)^{-1}X'Y$, $\hat{Y} = \hat{\beta}X = P_XY$ – fitted values, projection on X, $\hat{\mu} = y - \hat{y} = (I - P_X)Y = M_XY$ – residuals, projection on Y.

• Last week we showed that $\hat{\beta} \xrightarrow{\mathbb{P}} \beta$. Now we show that the same holds for varince of the residuals μ . Recall that $\sigma^2 = \mathbb{E}\mu_t^2$ and $\hat{\sigma}^2 = \frac{1}{T} \sum \mu_t^2$ (μ_t is not observable!). Note that $\hat{\beta}$ is close to β , so we can expect that $\hat{\mu}_t = y_t - \hat{\beta}' x_t$ to be close to μ_t . Thus we can consider $\frac{1}{T} \sum \hat{\mu}_t$ as an estimator for σ^2 .

- Proposition
 - $\hat{\sigma}^2 \rightarrow \sigma^2$, where $\hat{\sigma}^2 = \frac{1}{T} \sum_t \hat{\mu}_t$.

Proof. Note that $\hat{\mu} = M_X \mu$ and

$$\mathbb{E}(\mu'\hat{mu}) = \mathbb{E}(\mu'M_X'M_X\mu) = \mathbb{E}(\mu'M\mu) = \mathbb{E}(tr(\mu'M\mu)) = \mathbb{E}(tr(M\mu\mu')) = tr(M\mathbb{E}(\mu\mu')) = \sigma^2 tr(M_X),$$

$$trM_X = tr(I_{T\times T} - X_{T\times \text{ (by) } K}(X'X)^{-1}X') =$$

= $trI_{t\times T} - tr(X(X'X)^{-1}X') = T - tr((X'X)^{-1}X'X)_{K\times K} = T - K.$

So we get that $\mathbb{E}(\hat{\mu}'\hat{\mu}) = (T-K)\sigma^2$.

This says that $\mathbb{E}(\frac{1}{T-K}\sum_{t=1}^{K}\mu_t^2) = \sigma^2 \Rightarrow \hat{\sigma}^2 = \frac{1}{T-K}\sum_{t=1}^{K}\hat{\mu}_t^2$. So $\hat{\sigma}^2$ is unbiased (this is also a consistent estimator – we will show it later).

• Cramer-Wald device

Let $\{X_n\}$ be a sequence of $k \times 1$ random variables. Then $X_n \xrightarrow{D} X$ (in distribution) $\Leftrightarrow \lambda' X_n \xrightarrow{D} \lambda' X$ $\forall \lambda \neq 0$.

Comment: We get a scalar problem, which is much more convenient to solve than a vector problem.

• Cramer

Let $\{X_n\}$ be a sequence of $k \times 1$ random variables and assume that $X_n = A_n Z_n$. Suppose in addition that $A_n \xrightarrow{\mathbb{P}} A$ which is positive definite and $Z_n \xrightarrow{D} \mathcal{N}(\mu, \Sigma)$. Then $A_n Z_n \xrightarrow{D} \mathcal{N}A\mu, A\Sigma A'$.

• Proposition

If we add an assumption

V $\mu_t \sim \mathcal{N}(0, \sigma^2)$

we will have:

- a) $(X'X)^{1/2}(\hat{\beta} \beta) \sim \mathcal{N}(0, \sigma^2 I)$
- b) $(T-k)\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{T-k}$ properly scaled estimator of σ^2 has the χ^2_{T-k} distribution.

Moreover $\hat{\beta}$ and $\hat{\sigma}^2$ are independent (where $\hat{\sigma}^2 = \frac{1}{T-k} \Sigma \hat{\mu}_t^2$).

Proof. a)

$$(X'X)^{1/2}(\hat{\beta} - \beta) = (X'X)^{1/2}X'\mu = (X'X)^{-1/2}\sum_{t} x_t\mu_t \sim \\ \sim \mathcal{N}(0, \sigma^2 (X'X)^{1/2}X'X(X'X)^{-1/2}) = \mathcal{N}(0, \sigma^2 I_k)$$

b) Note $(T-k)\frac{\hat{\sigma}^2}{\sigma^2} = \frac{1}{\sigma^2}\mu' M\mu$.

Since $\sigma^{-1}\mu \sim \mathcal{N}(0,I)$, then $\frac{\mu' M \mu}{\sigma^2} \sim \chi^2_{rank(M)=T-k}$. From Tut. 2 Ex. 3 recall that X'AX and βY are independent only if AB = 0. Note that $M_X X(X'X)^{-1} = 0$, because $M_X X = 0$ (M_X anihilates X).

• Corollary

Under our assumptions the asymptotic distribution of $T^{1/2}(\hat{\beta} - \beta) \sim \mathcal{N}(0, \sigma^2 Q^{-1})$.

Proof. That comes $\hat{\beta} - \beta \sim \mathcal{N}(0, \sigma^2(X'X)^{-1})$ and $\frac{X'X}{T} \to Q$. Therefore $(\frac{X'X}{T})^{1/2}T^{1/2}(\hat{\beta} - \beta) \sim^a \mathcal{N}(0, \sigma^2 I)$. Using Cramer this says that $T^{1/2}(\hat{\beta} - \beta) \sim^a \mathcal{N}(0, \sigma^2 Q^{-1})$ (asymptotic distribution).

2. Relaxing assumption I

• Now X are random variables, not fixed numbers. Let us consider stochastic regressors (X are random regressors), so replace I with I':

I' Random variables x_t are i.i.d. with $\mathbb{E}(x_t x'_t) = \Sigma_x$ positive definite.

• Proposition

Under I', II and III, $\hat{\beta}$ is consistent.

Proof.
$$\hat{\beta} - \beta = (X'X)^{-1}X'\mu = (\frac{X'X}{T})^{-1}(\frac{X'\mu}{T}).$$

By LLN $\frac{X'X}{T} \xrightarrow{\mathbb{P}} \Sigma_X$ (*).
Since Σ_X is positive definite, then by Slutsky theorem $(\frac{X'X}{T})^{-1} \xrightarrow{\mathbb{P}} \Sigma_X^{-1}.$
Now consider $\frac{1}{T} \sum x_t \mu_t = \frac{1}{T} \sum z_t$. With x_t iid. and μ_t iid., z_t is also iid.
Therefore $\mathbb{E}(x_t\mu_t) = \mathbb{E}x_t\mathbb{E}\mu_t = 0$. So employing LLN $\frac{1}{T} \sum z_t \xrightarrow{\mathbb{P}} 0$. We only have to show consistency of $\hat{\beta} - \beta$.
In effect $\hat{\beta} - \beta = (\frac{X'X}{T})^{-1}(\frac{X'\mu}{T}) \xrightarrow{\mathbb{P}} \Sigma_X^{-1} \cdot 0 = 0.$
So $\hat{\beta}$ is consistent.

• Proposition

Under I', III and μ_t iid., $\hat{\sigma}^2 \xrightarrow{\mathbb{P}} \sigma^2$.

Proof.
$$\hat{\sigma}^2 = \frac{\hat{\mu}'\hat{\mu}}{T-k} = \frac{\mu'M_X\mu}{T-k} = \frac{T}{T-K} \left[\frac{1}{T}\mu'\mu - \frac{X'\mu}{T}\left(\frac{X'X}{T}\right)^{-1}\frac{X'\mu}{T}\right] \xrightarrow{\mathbb{P}} 1[\sigma^2 - 0 \cdot \Sigma_X^{-1} \text{ (from } \star) \cdot 0] = \sigma^2.$$

Therefore $\hat{\sigma}^2$ is consistent.

- Remarks: $\hat{\sigma}^2$ is an estimator of the volatility. Estimators $\hat{\sigma}^2$ and $\hat{\beta}$ are consistent!
- **Theorem** Under I', II, III with μ_t iid., we have

- a) $T^{1/2}(\hat{\beta} \beta) \xrightarrow{D} \mathcal{N}(0, \sigma^2 \Sigma_X^{-1})$ If in addition we assume that $\mathbb{E}\mu_t^4 < \infty$ then
- b) $T^{1/2}(\hat{\sigma}^2 \sigma^2) \xrightarrow{D} \mathcal{N}(0, \mathbb{E}\mu_t^4 \sigma^4).$
- *Proof.* a) We have that $T^{1/2}(\hat{\beta} \beta) = (\frac{X'X}{T})^{-1} \frac{X'\mu}{T^{1/2}}$. We know already that $(\frac{X'X}{T})^{-1} \to \Sigma_X^{-1}$. What remains to prove is $\left(\frac{X'\mu}{T^{1/2}}\right) \to \mathcal{N}(0, \sigma^2 \Sigma_X)$.

$$\frac{X'\mu}{T^{1/2}} \equiv T^{-1/2} \sum x_t \mu_t = T^{-1/2} \sum z_t \to \mathcal{N}(0, \sigma^2 \sum_X)$$

where z_t is a vector of random variables.

By Cramer-Wald we need to show that $\lambda' z_t$ converges $\forall \lambda \neq 0$. μ_t and x_t are iid., so z_t are iid. and $\lambda' z_t$ are iid. We also know that $\mathbb{E}(\lambda' z_t) = 0$. By the Lindeberg-:evy CLT $\frac{1}{T^{1/2}} \sum \lambda' z_t \to \mathcal{N}(0, \sigma^2 \lambda' \Sigma_X \lambda).$ Since λ is arbitrary, $T^{-1/2} \sum z_t \to \mathcal{N}(0, \sigma^2 \Sigma_X)$. b) $\hat{\sigma}^2 = \frac{1}{T-k} \sum \hat{mu}_t^2$. Consider $\tilde{\sigma}^2 = \frac{1}{T} \sum \hat{\mu}_t^2$ (asymptotically it is the same).

Recall that $M_X = I - X(X'X)^{-1}X'$.

$$T^{1/2}(\tilde{\sigma}^2 - \sigma^2) = T^{-1/2}\hat{\mu}'\hat{\mu} - T^{1/2}\sigma^2 = \frac{1}{T^{1/2}}(\mu' M\mu - T\sigma^2) =$$
$$= T^{-1/2}\sum_{t}(\mu_t^2 - \sigma^2) - T^{1/2}(\frac{X'X}{T})(\frac{X'X}{T})^{-1}(\frac{X'\mu}{T}) \to \mathcal{N}(0, \mathbb{E}\mu_t^2 - \sigma^4)$$

because $(\frac{X'X}{T})(\frac{X'X}{T})^{-1}(\frac{X'\mu}{T}) \to 0.$ Next $T^{1/2}(\hat{\sigma}^2 - \sigma^2) = (T - k)\frac{1}{T}T^{1/2}(\tilde{\sigma}^2 - \sigma^2) + \frac{K}{T^{1/2}}\sigma^2 \to 1 \cdot T^{1/2}(\tilde{\sigma}^2 - \sigma^2) + 0.$ By Cramer $T^{1/2}(\hat{\sigma}^2 - \sigma^2)\mathcal{N}(0, \mathbb{E}\mu^4 - \sigma^4)$.

3. Remarks

a) To convergence results

- We do not need normality of the errors μ_t .
- If $\mathbb{E}\mu_t^{4+\delta}$ for some $\delta > 0$ is finite, then we can drop iid. assumption and use Lyapunov instead (Lindeberg-Levy CLT).
- If μ_t are normally distributed $T^{1/2}(\hat{\sigma}^2 \sigma^2) \xrightarrow{D} \mathcal{N}(0, 2\sigma^4)$, because $\mathbb{E}\mu^4 = 3\sigma^4$.

b) About consistency of $\hat{\beta}$

If $\frac{X'\mu}{T} \xrightarrow{a.s.} 0$ and $\frac{X'X}{T} - M_T \xrightarrow{a.s.} 0$, where M_n is bounded and uniformly positive definite (matrix), then $\hat{\beta}$ exists almost surely for all T sufficiently large and $\hat{\beta} \xrightarrow{a.s.} \beta$.

Proof. Recall that earlier we had $\frac{1}{T}X'X \to \Sigma_X$ fixed and positive definite. Note that $det(\frac{X'X}{T}) - det(M_T) \xrightarrow{a.s.} 0$,

because $<_T$ is bounded and determinant is continuous.

Since $\{M_T\}$ is uniformly positive definite, $\exists \delta > 0$ such that determinant $det(\frac{X'X}{T}) > \delta$ for sufficiently alrge T.

Then $\left(\frac{X'X}{T}\right)^{-1}$ exists also surely and $\hat{\beta} = \left(\frac{X'X}{T}\right)^{-1}\frac{X'Y}{T}$. So $\hat{\beta} - \beta = (\frac{X'X}{T})^{-1} \frac{X'\mu}{T}$ and

$$\hat{\beta} - (\beta + M_T^{-1} \cdot 0) \xrightarrow{a.s.} 0 \Rightarrow \hat{\beta} \xrightarrow{a.s.} \beta$$

c) Slutsky theorem

Let $\{X_n\}, \{Y_n\}$ be sequences of scalar/vector/matrix random elements. If X_n converges in distribution to a random element X, and Y_n converges in probability to a constant c, then

- a) $X_n + Y_n \xrightarrow{D} X + c$,
- b) $Y_n X_n \xrightarrow{D} c X$,
- c) $Y_n^{-1}X_n \xrightarrow{D} c^{-1}X$ provided that c is invertible.

4. Restricted Least Squares

- Suppose there are *m* linearly independent constraints on parameters of β in the linear regression: $R\beta = r$, where *R* is $m \times k$ and *r* is $m \times 1$ and m < k, rank(R) = m.
- How do we estimate a regression with constraints? We add a Lagrangian to the loss function.

$$g(\beta, \lambda) = (Y - X\beta)'(Y - X\beta) + 2\lambda'(R\beta - r)$$

FOC: $\frac{g}{\partial \beta} = -2X'Y + 2X'X\beta + 2R\lambda' = 0$, $\frac{\partial g}{\partial \lambda} = R\beta - r = 0$. It is easier to solve it in the matrix form

$$\begin{bmatrix} X'X & R' \\ R & 0 \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \lambda \end{bmatrix} = \begin{bmatrix} X'Y \\ r \end{bmatrix}$$

$$\begin{bmatrix} \hat{\beta} \\ \lambda \end{bmatrix} = \begin{bmatrix} X'X & R' \\ R & 0 \end{bmatrix}^{-1} \begin{bmatrix} X'Y \\ r \end{bmatrix} = \\ = \begin{bmatrix} (X'X)^{-1}(I - R'(R(X'X)^{-1}R')^{-1}R(X'X)^{-1} & (X'X)^{-1}R(R(X'X)^{-1}R')^{-1} \\ -(R(X'X)^{-1}R')^{-1}R(X'X)^{-1} & -(R(X'X)^{-1}R')^{-1} \end{bmatrix} \begin{bmatrix} X'Y \\ r \end{bmatrix}$$

This gives a constrained least squares estimator

$$\hat{\beta} = (X'X)^{-1}(I - R'(R(X'X)^{-1}R')^{-1}R(X'X)^{-1})X'Y + (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}r = \beta^{OLS} - (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(R\beta^{OLS} - r)$$

If we have constraints in linear regression, we get $\hat{\beta} = \beta^{OLS} - \text{ correction term.}$

 $\hat{\beta} = \beta^{OLS}$ if β^{OLS} satisfies our constraint $R\beta^{OLS} - r = 0$.

There exists also a geometric interpretation – restricted projection!

• Theorem

If we have a constrained regression with:

- a) non-stochastic X
- b) X'X non singular

c)
$$\mu_t \sim \mathcal{N}(0, \sigma^2 I)$$

where β solves $R\beta = r$ with rank(R) = m

$$\frac{R\hat{\beta} - r)'(R(X'X)^{-1}R')^{-1}(R\hat{\beta} - r)/m}{T\hat{\sigma^2}/(T - k)} \sim F_{m,T-k} \ (\odot).$$

Remarks:

 $\hat{\beta}$ is OLS (not constrained).

F statistic – ratio of chi-squared variables i.e. If $q_1 \sim \chi^2_{n_1}$ and $q_2 \sim \chi^2_{n_2}$, then $\frac{q_1/n_1}{1_2/n_2} \sim F_{n_1,n_2}$ (*).

Proof. Note that

$$[R(\hat{\beta}-\beta)]'[R(X'X)^{-1}R']^{-1}[R(\hat{\beta}-\beta)] = \mu'X(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}X'\mu = \mu'Q\mu$$

where

$$Q = X(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}X'$$

is idempotent (show it! $Q \cdot Q = Q$), rank(Q) = m. So we have that $\mu' Q \mu \sim \chi_m^2$ and $(T - k) \frac{\hat{\sigma}^2}{\sigma^2} = \frac{\mu' M_X \mu}{\sigma^2} \sim \chi_{T-k}^2$. So from (*), we have (\odot). In addition $M_X Q = 0 \Rightarrow q_1$ and q_2 are independent.

TUTORIAL 3, 02/03/2012

1. Exercise 1

Establish consistency of β in the following linear model $y_t = \alpha + \beta t + \mu t$, $t = 1, \ldots, T$, where $\mathbb{E}\mu_t = 0$, $\mathbb{E}\mu_t^2 = \sigma^2$ and $\mathbb{E}(\mu_t \mu_s) = 0 \ \forall t \neq s$. Obtain a limiting distribution of $T^{\frac{3}{2}}(\hat{\beta} - \beta)$. Comment:

Because of the specific regressors (time!), we can have the power of 3/2 – we have much faster way of convergence and consistency during the lecture we had 1/2).

We know that $\mathbb{E}\hat{\beta} = \beta$ $Var\hat{\beta} = \sigma^2 (X'X)^{-1} = \frac{\sigma^2}{\sum_t (t-\bar{t})^2}$, where $\bar{t} = \frac{1}{T} \sum_{t=1}^T t$.

To show consistecy it is sufficient to show that $Var\hat{\beta} \to 0$ (it follows from Markov's inequality that checking the second moment is enough for consistency of estimator).

$$\frac{\sigma^2}{\sum_t (t-\bar{t})^2} = \frac{\sigma^2}{\sum t^2 - T\bar{t}^2} = \frac{\sigma^2}{\frac{1}{6}T(T+1)(2T+1) - \frac{1}{4}T(T+1)^2} = \frac{12\sigma^2}{T(T^2-1)} \to 0$$

Note that $\sum t = \frac{T(T+1)}{2}$ and $\sum t^2 = \frac{T(T+1)(2T+1)}{6}$. So now we have that

$$Var(T^{3/2}(\hat{\beta}-\beta)) = T^3 Var(\hat{\beta}-\beta) = \frac{12\sigma^2}{1-T^2} \to 12\sigma^2$$

So $T^{3/2}(\hat{\beta} - \beta) \xrightarrow{a} \mathcal{N}(0, 12\sigma^2)$.

2. \diamondsuit Exercise 2

Consider a regression model $y_t = \beta_1 x_t^2 + \beta_2 x_t^2 + \mu_t$, where x_t^1 and x_t^2 are centered (zero mean). Let ρ be a simple correlation of x_t^1 and x_t^2

$$\hat{\rho} = \frac{Cor(x_t^1, x_t^2)}{\sqrt{Varx_t^1 Varx_t^2}}$$

Show that $corr(\hat{\beta}_1, \hat{\beta}_2) = -\hat{\rho}$. Think what happens if $\hat{\rho} \to 1$ (then regressors become closer to each other – they are almost the same variables).

Note that $\hat{\beta}_1$ and $\hat{\beta}_2$ are OLS estimators of β_1 and β_2 . Hint:

Matrix form: $Y = \beta_1 X_1 + \beta_2 X_2 + \mu$

Show that $\hat{\beta}_1 = (X'_1M_2X_1)^{-1}X'_1M_2Y$ and similarly $\hat{\beta}_2 = (X'_2M_1X_2)^{-1}X'_2M_1Y$, where $M_1 = I - X_1(X_1X'_1)^{-1}X'_1$ and $M_2 = I - X_2(X_2X'_2)^{-1}X'_2$ (projects off the space of X_1 and X_2 respectively)