
LECTURE 1, 17/02/2012

1. Introduction

• Instructor: Piotr Eliasz, language: English

• Wednesday 9-10 (confirm by email – peliasz@mimuw.edu.pl)

• Bibliography:

– ”Estimation and Inference in Econometrics”, R. Davidson and J. G. MacKinnon ♥
– ”Econometric Theory and Methods”, R. Davidson and J. G. MacKinnon, Oxford University Press

(New York)

– ”Advanced econometrics”, Takeshi Amemiya

– ”Econometrics”, Fumiohayashi

– ”Probability and Random Processes”, G. R. Grimmett, D. R. Stirzaker

• A course is designed to familiarize students with statistical methods employed in analysis of economic and
financial data. Emphasis will be places ona thorough review of statistical techniques employed in small
and large sample inference. Specifically, we will start with a review of matrix algebra and probability.
Next, we will cover the following concepts: standard linear model in small and large samples, violations
of assumptions; maximum likelihood estimation; generalized method of moments.

• Grading: final exam (50%) and take-home exercises and empirical applications (50%)

2. Definitions

• Probability space – (Ω,F ,P)

– Ω is a set called sample space

– F is a family of events (an event is an element of F).

– P is a probability measure on (Ω,F ,P).

• Random variable is a function x : Ω→ R with a property that {ω ∈ Ω : X(ω) ≤ x} ∈ F ∀ x ∈ R.

• Distribution function of a random variable X is the function F : R→ [0, 1] given by F (x) = P(X ≤ x).
Random variable X is continuous if its distribution function can be expressed as F (x) =

∫ x
−∞ f(u)du,

x ∈ R for some integrable function f : R→ [0,∞).

3. Convergence of random variables
Let X1, . . . , Xn be random variables on some probability space (Ω,F ,P. We say that

• Xn
a.s.−−→ X almost surely if {ω ∈ Ω : Xn(ω)→ X(ω) as n→∞} is an event whose probability is 1.

• Xn
r−→ X in r’th mean, where r ≥ 1 if E|Xr

n| <∞ for all n and E(|Xn −X|r)→ 0 as n→∞.

• Xn
P−→ X in probability if P(|Xn −X| > ε)→ 0 as n→∞ ∀ε > 0.

• Xn
D−→ X in distribution if P(Xn ≤ X)→ P(X ≤ x) as n→∞ for all points at which Fn(x) = P(X ≤

x) is continuous.

4. Implications

• Xn
a.s.−−→ X/Xn

r−→ X ⇒ Xn
P−→ X ⇒ Xn

D−→ X (r ≥ 1).

• If r > s ≥ 1, then Xn
r−→ X ⇒ Xn

s−→ X.

• If Xn
D−→ c, where c is constant, then Xn

P−→ c.

• If Xn
D−→ X and P(|Xh| ≤ k) = 1 ∀h and some k then Xn

r−→ X ∀r ≥ 1.

• If
∑
n P(|Xn −X| > ε) <∞ ∀ε > 0, then Xn

a.s.−−→ X.

• If Xn
P−→ X then Xn

D−→ X.
Converse is false: Let X be Bernoulli variable with parameter 1/2. Let X1, . . . , Xn be identical random

variables given by Xn = X ∀n. Then Xn
D−→ X. Now let Y = 1 − X. Clearly Xn

D−→ Y . We can’t
converge in any other mode as |Xn − Y | = 1 always.
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Proof. Suppose Xn
P−→ X. Let’s write Fn(x) = P(Xn ≤ x), F (x) = P(X ≤ x).

Fn(x) = P(Xn ≤ x) = P(Xn ≤ x ∩X ≤ x+ ε) + P(Xn ≤ x ∩X > x+ ε) ≤

≤ F (x+ ε) + P(|Xn −X| > ε)(
n→∞−−−−→ 0)

F (x− ε) = P(X ≤ x− ε) = P(X ≤ x− ε ∩Xn ≤ x) + P(X ≤ x− ε ∩Xn > x) ≤

≤ Fn(x) + P(|Xn −X| > ε)(
n→∞−−−−→ 0)

So we obtain F (x− ε) ≤ lim inf Fn(x) ≤ lim supFn(x) ≤ F (x+ ε) ∀ε > 0. If F is continuous at x then

F (x− ε) ↑ F (x) and F (x+ ε) ↓ F (x) as ε→ 0. Since ε is arbitrary, Fn(x)
D−→ F (x).

5. Other

• Markov’s inequality

If X is any random variable with finite mean then P(|X| ≥ a) ≤ E|X|
a for any a > 0.

Proof. Let A = {|X| ≥ a}. Then |X| ≥ aIA, where IA(ω) = 1 if ω ∈ A, 0 otherwise.
So E|X| ≥ aP(|X| ≥ a).

• Skorokhod’s representation theorem

If {Xn} and X with distribution function {Fn} and F are such that Xn
D−→ X, then there exists a

probability space (Ω′,F ′,P′) and random variables {Yn} and Y ′, which map Ω′ into R such that

– {Yn} and Y have distribution functions {Fn} and F

– Yn
a.s.−−→ Y as n→∞.

• Corollary

If Xn
D−→ X and g : R→ R is continuous, then g(Xn)

D−→ g(X).

Proof. By Skorokhod’s there exists a sequence {Yn} distributed identically to {Xn} which converges

almost surely to Y , which is a copy of X. Since g is continuous Yn(ω) → Y (ω) implies g(Yn(ω))
a.s.−−→

g(Y (ω)). It means that {ω : Yn(ω)→ Y (ω)} ⊆ {ω : g(Yn(ω))→ g(Y (ω))} and P{ω : Yn(ω)→ Y (ω)} = 1

(a.s. convergence), then g(Yn)
a.s.−−→ g(Y ) ⇒ g(Yn)

D−→ g(Y ) ⇒ g(Xn)
D−→ g(X).

6. Laws of Large Numbers (LLN)
Let {Xn} be a sequence of random variables with partial sums Sn =

∑n
i=1Xi.

• Kolmogorov’s LLN
Let X1, X2, . . . be independent identically distributed (i.i.d.) random variables.

Then 1
n

∑n
i=1Xi

a.s.−−→ µ if and only if E|Xi| <∞ and EXi = µ.

• Kolmogorov’s LLN
Let X1, X2, . . . be independent (but not identical) with EXi = µi and V arXi = σ2

i .

If
∑n
i=1

σ2
i

i2 <∞ then 1
n

∑n
i=1Xi − 1

n

∑n
i=1 µi

a.s−−→ 0 (or written X̄n − µ̄n
a.s−−→ 0).

7. Central Limit Theorems (CLT)

• Lindeberg-Levy CLT
Let X1, X2, . . . be a sequence of i.id. random variables with finite means µ and finite non-zero vairances
σ2. Let Sn =

∑n
i=1Xi.

Then Sn−nµ√
nσ2

D−→ X ∼ N (0, 1) or
√
n( 1

n

∑n
i=1(Xi−µσ ))

D−→ X ∼ N (0, 1).

• Lindeberg-Feller CLT
Let X1, X2, . . . be a sequence of independent random variables with EXi = µi, V arXi = σ2

i < ∞ and
distribution function Fi.

Then
√
n

1
nSn−

1
n

∑n
i=1 µi√

1
n

∑n
i=1 σ

2
i

D−→ N (0, 1) (random variable with normal distribution)

and limn→∞max1≤i≤n n
−1(

σ2
i

σ̄2
n

) = 0 (where σ̄2
n = 1

n

∑n
i=1 σ

2
i ).

CLTs above are satisfied if and only if for any ε > 0 limn→∞ σ̄−2
n n−1

∑n
i=1

∫
(x−µi)2>εnσ2

n
(x−µi)2dFi(x) =

0 (Lindeberg condition – it restricts average contribution form tails of the distribution to the variance).

• Lyapunov’s CLT
Let X1, X2, . . . be a sequence of independent random variables with EXi = µi, V arXi = σ2

i , σ2
i 6= 0 and

E|Xh − µh|2+δ < M <∞ for some δ > 0 ∀h.

If σ̄2
h > δ > 0 ∀h sufficiently large, then

√
n(

1
nSn−

1
n

∑n
i=1 µi√

1
n

∑n
i=1 σ

2
i

)
D−→ N (0, 1).
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TUTORIAL 1, 17/02/2012

1. Exercise 1
Let X, Y – Bernoulli with parameter 1/2. Consider X + Y and |X − Y |.
Note

Cov(X + Y, |X − Y |) = E[(X + Y )|X − Y |]− E(X + Y )E|X − Y | =

=
1

4
+

1

4
(only when X = 0, Y = 1 or X = 1, Y = 0) − (

1

4
+

1

4
+ 2

1

4
)
1

2
= 0

P(X + Y = 0, |X − Y | = 0) = 1
4

P(X + Y = 0)P(|X − Y | = 0) = 1
4 ·

1
2 6=

1
4

So correlation is 0, but variables are not independent.

2. Exercise 2
Let X and Y have joint probability distrubtion (bivariate normal, where ρ is a constant −1 < ρ < 1)

f(x, y) =
1

2π
√

1− ρ2
exp[− 1

2(1− ρ2)
(x2 − 2ρxy + y2)]

=
1

√
2π
√

1− ρ2
exp[− 1

2(1− ρ2)
(x− ρy)2]

1√
2π

exp(−1

2
y2) = g(x, y)h(y)

Now, fY (y) =
∫∞
−∞ g(x, y)h(y)dx = h(y)

∫∞
∞ g(x, y)dx = h(y) · 1 (1 – as it’s a normal density).

By symmetry fX(x) = 1√
2π

exp[− 1
2x

2] (N (0, 1)).

Cov(X,Y ) =

∫ ∫
xyf(x, y)dxdy = (only this, because µ = 0)

=

∫ ∫
xyg(x, y)h(y)dxdy =

∫
yh(y)[

∫
xg(x, y)dx]dy =

∫
yh(y)ρydy =

= ρ

∫
y2h(y)dy = ρ · 1 (as variance = 1)

If ρ = 0 then f(x, y) = 1√
2π

exp(− 1
2x

2) 1√
2π

exp(− 1
2y

2) = fX(x)fY (y).

So X and Y are independent.

3. Exercise 3

• If V arX = 0 ⇒ X is a constant.
Note
E(X2) =

∑
x x

2P(X = x) = 0 ⇒ P(X = x) = 0 ∀x 6= 0 ⇒ P(X = 0) = 1
V arX = 0 ⇒ P(X − EX = 0) = 1 ⇒ X = constant

• Take E(X2) > 0, E(Y 2) > 0. For a, b ∈ R, let Z = aX − bY
0 ≤ E(Z2) = a2E(X2)− 2abEXY + b2E(Y 2)
Consider its as a quadratic – if b 6= 0 ∆ = 4b2E(XY )2 − 4E(X2)b2E(Y 2) ≤ 0
E(XY )2 ≤ E(X2)E(Y 2) – Cauchy-Schwartz inequality
Note
E(XY )2 = E(X2)E(Y 2) only if P(aX = bY ) = 1 (Z = 0) for some a, b ∈ R and b 6= 0.

• From Cauchy-Schwartz
E[(X − EX)(Y − EY )]2 ≤ E[(X − EX)2]E[(Y − EY )2] = V arXV arY
Taking square roots

|Cov(X,Y )| = E[(X − EX)(Y − EY )] ≤
√
V arXV arY ⇒ |ρ(X,Y )| = |Cov(X,Y )|√

V arXV arY
≤ 1

4. ♦ Exercise 4
Let X1, X2, . . . be a sequence of random variables with EXt = 0 and V ar(Xt) = σ2

t < c < ∞. Let

corr(Xs, Xt) = ρst. Show that if ρst → 0 as |s − t| → ∞ then X̄n
2−→ 0 (convergence in mean-square,

r = 2).
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LECTURE 2, 24/02/2012

1. Introduction

• Let us consider a set of data {zt}t=1,...,T (not necessarily a time series). Let this data be distributed as
f(zt, θ0) (known p.d.f. – probability density function), where θ0 is the true value of parameter θ.

• In this course we will be concerned mostly with the case when zt = {yt, xt}, f(zt, θ0) can be decomposed
in the following way f(zt, θ0) = f1(yt|xt, θ0)f2(xt, θ0) = f1(yt|xt, θ01)f2(xt, θ02)
and our interest is in θ0.

• For instance we can take a function f1(yt|xt = x, θ01) ∼ N (µ(x, θ01), σ2(x, θ0)).
For example y – income, x – consumption.

• Our interest often is in E(yt|xt).

2. Linear regression model (standard linear model)
makes an assumption that this conditional expectation is linear in x i.e.
E(yt|xt) = βxt or in matrix notation E(Yt|Xt) = β′Xt, where β = [β1, . . . , βn]′, Xt = [X1t, . . . , Xkt]

′.

• An alternative way to write this is Yt = β′Xt + µt (?), t = 1, . . . , T where E(µt|xt) = 0

• Terminology:
Yt – endogenous, dependent variable
Xt – exogenous, independent variable, regressors

• Remark:
If Xt is fixed (deterministic), then E(Yt) = β′Xt and E(µt) = 0 (it’ll often be this case).

• Matrix notation

Take Y = [y1, . . . , yT ]′T×1, X =

x11 . . . x1k

. . .
xT1 . . . xTK


T×K

(T observations, K variables),

β = [β1, . . . , βK ]K×1, µ = [µ1, . . . , µT ]T×1

• We can now write (?) as Y = Xβ + µ.
We have a data set X, Y and we want to make inferences about parameter β (from observed data
(Y,X)). For example we can write an objective function.

3. Objective function Q

• Q is such that β̂ = argminβ Q(β;Y,X).

• One obvious candidate for Q is a function which squares deviations of Yt from their mean level β′Xt.
β̂ = argminβ Q(β) is an Ordinary Least Squares estimator (OLS).

Q(β) =
∑T
t=1(yt − β′Xt)

2 = (y −Xβ)′(y −Xβ) – matrix notation

• First Order Conditions (FOC) for the optimization:
∂Q
∂β |β̂ = 0 ⇒ −2X ′Y + 2X ′Xβ̂ = 0.

If X ′X is of ful column rank, then β̂ = (X ′X)−1X ′Y .

• Second Order Conditions (SOC) for the optimization:
∂2Q
∂β∂β′ = 2X ′X > 0 (ok, if X ′X is positive definite).

• If FOC and SOC are satisfied, then β̂ will minimize Q(β).

• Least Square Residuals
are defined by µ̂t = yt − β̂′xt, t = 1, . . . , T or in matrix notation µ̂ = Y −Xβ̂ (#).

• Remark 1
Residuals are orthogonal to X i.e. X ′µ̂ = 0 (##), where µ̂ = [µ̂1, . . . , µ̂T ].

Proof. If we substitute (#) to (##) X ′µ̂ = X ′Y −X ′Xβ̂ = X ′Y −X ′X(X ′X)−1X ′Y = 0.

• Remark 2
If there is a constant among regressors, then I′µ̂ = 0 (or

∑
t µ̂t = 0).

4. Statistical properties of OLS
Assumptions

I X is non-stochastic and finite T ×K,
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II X ′Xβ is non-singular ∀T ≥ K,

III E(µ) = 0,

IV µ ∼ N (0, σ2
0I),

V limT→∞(X
′X
T ) = Q is positive definite.

Under these assumptions, we have the following:
(existence and uniqueness, unbiasness, BLUE, normal distribution, consistent)

a) Under I and II β̂ exists and is unique.

b) Under I to III E(β̂) = β0, so β̂ is unbiased estimator of β0.

Proof. E(β̂) = E[(X ′X)−1X ′Y ] = E[(X ′X)−1(X ′X)β0 + (X ′X)−1X ′µ] = β0 + (X ′X)−1X ′Eµ = β0 as
Eµ = 0.

c) Under I to III β̂ is the Best Linear Unbiased Estimator (BLUE) in a sense that the covariance matrix

of any other linear unbiased estimator exceeds that of β̂ by a positive definite matrix (Gauss-Markov
theorem).

Proof. Consider another linear estimator β̃ = D?Y , where D? does not depend on the data Y and let
D = D? − (X ′X)−1X ′. With this we have:

β̃ = [D + (X ′X)−1X ′]Y = [D + (X ′X)−1X ′](Xβ0 + µ) = (DX + I)β0 + (D + (X ′X)−1X)µ

As X is fixed, the expected value of the second part equals 0. So far β̂ is unbiased, so we must have
DX = 0. Now

V arβ̃ = E(β̃ − β0)(β̃ − β0)′ = (D + (X ′X)−1X ′)E(µµ′)(D′ +X(X ′X)−1) =

= const · σ2 · const = σ2[(DD′) +DX(X ′X)−1 + (X ′X)−1X ′D′ + (X ′X)−1] =

= σ2(DD′ + (X ′X)−1) = V arβ̂ + σ2DD′ > V arβ̂

So β̃ is a worse estimator than β̂.
Recall

β̂ = (X ′X)−1X ′Y = (X ′X)−1X ′Xβ0 + (X ′X)−1X ′µ = β0 + (X ′X)−1X ′µ.

So

V arβ̂ = E[(X ′X)−1µµ′X(X ′X)−1] = (X ′X)−1X ′E(µµ′)X(X ′X)−1 =

= σ2(X ′X)−1X ′X(X ′X)−1 = σ2(X ′X)−1.

d) Under I to IV β̂ ∼ N (β0, σ
2(X ′X)−1).

e) Under I to V β̂ is consistent for β0.

Proof. We have β̂ − β0 = (X ′X)−1X ′µ = (X
′X
T )−1(X

′µ
T )

T→∞−−−−→ Q−1 · ?.
From remark above mean of ? equals 0. Let us consider the second moment

V ar(
X ′µ

T
)K×K = E[(

1

T

∑
t

Xtµt)K×1,1×1(
1

T

∑
t

Xtµt)
′ =

1

T 2

∑
t

XtX
′
tEµ2

t =
σ2

T

∑
tXtX

′
t

T

P−→ 0

By Markov’s X′µ
T

P−→ 0 ⇒ β̂
P−→ β0 (by Slutsky theorem).

There exist other estimators (here – quadratic loss; other moments, absolute loss, assymetric losses).
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TUTORIAL 2, 24/02/2012

1. ♦ Exercise 4 (Tutorial 1)

corr(Xs, Xt) = ρst =
Cov(Xs, Xt)√

σ2
sσ

2
t

=
E(XtXs)

σtσs

So E(XtXs) = ρstσsσt.

We have to show that ρst
|s−t|→∞−−−−−−→ 0 ⇒ X̄n

2−→ 0 (i.e. E(X̄n)2 n→∞−−−−→ 0),

E(X̄n)2 =
1

n2
E(X2

1 + . . .+X2
n) + 2

n∑
i,j=1,i6=j

XiXj =

=
1

n2
(
∑

EX2
i + 2

n∑
i,j=1,i6=j

ρijσiσj) ≤
1

n2
(nc+ 2c

∑
ρij) <

<
1

n2
(nc+ 2c(nN +

n(n− 1)

2
ε)) <

1

n2
(n(c+ 2cN) + cn2ε) =

c+ 2cN

n
+ cε→ 0

Because ρst
|s−t|→∞−−−−−−→ 0 ⇔ ∀ε > 0 ∃N |ρst| < ε if |s− t| > N .

2. Exercise 1
Let X1, X2, . . . be a sequence of i.i.d. (independent and identically distributed) random variables with EXt =
µ, V arXt = σ2 <∞. Show that Lindeberg condition is satisfied

lim
n→∞

σ̄−2
n n−1

n∑
i=1

∫
(x−µi)2>εnσ2

n

(x− µi)2dFi(x) = 0.

Note that Lyapunov condition is stronger, it is better to show the Lindeberg condition if possible.
Notation: σ =

√
σ̄2
n.∑n
i=1 E(Xi − µ)2I{|Xi−µ|>εnσ}

nσ2
=
nE(X1 − µ)2I{|X1−µ|>εnσ}

nσ2

n→∞−−−−→ E0

σ2
= 0

We can use the theorem about monotone convergence, because

E|X1 − µ|2I{|X1−µ|>εnσ} ≤ E|X1 − µ|2 = σ2

3. Exercise 2 (proof of Lyapunov’s CLT)
Let X1, X2, . . . be a sequence of independent random variables with EXt = µt, V arXt = σ2

t < ∞ and
E|Xt − µt|2+δ < M <∞ for some δ > 0 ∀t and ∃δ′ > 0 such that σ̄2

n > δ′ for all n sufficiently large.

Then
√
n X̄n−µ̄nσ̄n

D−→ N (0, 1).

Hint: Try Lindeberg condition σ̄−2
n n−1

∑n
i=1 E|Xi − µi|2I{|Xi−µi|>εnσ̄2}.

E|Xi − µi|2I{|Xi−µi|>εnσ̄2} ≤ (E|Xt − µt|2+δ)
1

1+ δ
2 (EI{|Xt−µt|2>εnσ̄2})

δ
2

1+ δ
2 ≤

≤M · (EI{|Xt−µt|2>εnσ̄2})

δ
2

1+ δ
2

n→∞−−−−→ 0

So Lindeberg condition is satisfied. We have used facts that:

• Schwartz inequality: E|xy| ≤ (E|x|p)
1
p (E|y|q)

1
q , 1

p + 1
q = 1

• P(|Xt − µt|2 > εnσ̄2) ≤ P(|Xt − µt|2 > εδ′n)→ 0

4. Exercise 3
Let yn×1 ∼ N (0, I) and A be a symmetric, idempotent matrix of order n and rank p. Show that

a) y′Ay ∼ χ2
p,

b) y′A1y and y′A2y are independent if and only if A1A2 = 0.
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a) Since A is symmetric and idempotent we can orthogonalize this matrix i.e. A = SΛS′ (S is the matrix of

eigenvectors), where Λ =


1

1
1

. . .
0

0


Eigenvalues equals either 0 or 1 since A is idempotent i.e. A′A = A.
There are n− p zeros and p ones in matrix Λ.
Now y′Ay = y′SΛS′y = t′Λt, where t = S′y.
Since y ∼ N (0, I), we have that t ∼ N (0, S′S) = N (0, I) and therefore t′Λt =

∑n
i=1 t

2
iλi =

∑p
i=1 t

2
i ∼ χ2

p.

b) We need A1y and A2y to be independent (transformation).

Cov(A1y,A2y) = E(A1yy
′A2) = A1E(yy′)A2 = A1A2.

y is N (0, I), so Cov(A1y,A2y) = 0 is sufficient for independence. Therefore A1A2 = 0.

LECTURE 3, 02/03/2012

1. Linear regression (yt = β′xt + µt) – continuation

• Assumptions:

I X is fixed (deterministic)

II rank(X) = k

III Eµt = 0, Eµ2
t = σ2, Eµtµτ = 0 (∀t 6= τ)

IV limT→∞
X′X
T = Q is positive definite

• Recall β̂ = (X ′X)−1X ′Y and so XT×K β̂K×1 = X(X ′X)−1X ′Y = PXY , where PX = X(X ′X)−1X ′ –
projects onto space spanned by X. MXX = X −X(X ′X)−1X ′X = 0

• Consider MX = I − PX = I −X(X ′X)−1X”′. It projects onto space orthogonal to X (anihilates X).

• Note that PXX = X(X ′X)−1X ′X = X and PAXAX = AX(X ′A′AX)−1(X ′A′AX) = AX

• Geomtry of OLS (linear regression – orthogonal projection!)
PX and MX are symmetric and idemponent that is MXMX = MX and PXPX = PX , PX +MX = I.
In our case Y = βX + µ, β̂ = (X ′X)−1X ′Y ,

Ŷ = β̂X = PXY – fitted values, projection on X,
µ̂ = y − ŷ = (I − PX)Y = MXY – residuals, projection on Y .

• Last week we showed that β̂
P−→ β . Now we show that the same holds for varince of the residuals µ.

Recall that σ2 = Eµ2
t and σ̂2 = 1

T

∑
µ2
t (µt is not observable!).

Note that β̂ is close to β, so we can expect that µ̂t = yt − β̂′xt to be close to µt. Thus we can consider
1
T

∑
µ̂t as an estimator for σ2.

• Proposition
σ̂2 → σ2, where σ̂2 = 1

T

∑
t µ̂t.

Proof. Note that µ̂ = MXµ and

E(µ′m̂u) = E(µ′M ′XMXµ) = E(µ′Mµ) = E(tr(µ′Mµ)) = E(tr(Mµµ′)) = tr(ME(µµ′)) = σ2tr(MX),

trMX = tr(IT×T −XT× (by) K(X ′X)−1X ′) =

= trIt×T − tr(X(X ′X)−1X ′) = T − tr((X ′X)−1X ′X)K×K = T −K.

So we get that E(µ̂′µ̂) = (T −K)σ2.

This says that E( 1
T−K

∑
µ2
t ) = σ2 ⇒ σ̂2 = 1

T−K
∑
µ̂2
t .

So σ̂2 is unbiased (this is also a consistent estimator – we will show it later).

• Cramer-Wald device
Let {Xn} be a sequence of k × 1 random variables. Then Xn

D−→ X (in distrbution) ⇔ λ′Xn
D−→ λ′X

∀λ 6= 0.
Comment: We get a scalar problem, which is much more convenient to solve than a vector problem.
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• Cramer
Let {Xn} be a sequence of k × 1 random variables and assume that Xn = AnZn. Suppose in addition

that An
P−→ A which is positive definite and Zn

D−→ N (µ,Σ). Then AnZn
D−→ NAµ,AΣA′).

• Proposition
If we add an assumption

V µt ∼ N (0, σ2)

we will have:

a) (X ′X)1/2(β̂ − β) ∼ N (0, σ2I)

b) (T − k) σ̂
2

σ2 ∼ χ2
T−k – properly scaled estimator of σ2 has the χ2

T−k distribution.

Moreover β̂ and σ̂2 are independent (where σ̂2 = 1
T−kΣµ̂2

t ).

Proof. a)

(X ′X)1/2(β̂ − β) = (X ′X)1/2X ′µ = (X ′X)−1/2
∑
t

xtµt ∼

∼ N (0, σ2(X ′X)1/2X ′X(X ′X)−1/2) = N (0, σ2Ik)

b) Note (T − k) σ̂
2

σ2 = 1
σ2µ

′Mµ.

Since σ−1µ ∼ N (0, I), then µ′Mµ
σ2 ∼ χ2

rank(M)=T−k.

From Tut. 2 Ex. 3 recall that X ′AX and βY are independent only if AB = 0. Note that
MXX(X ′X)−1 = 0, because MXX = 0 (MX anihilates X).

• Corollary
Under our assumptions the asymptotic distribution of T 1/2(β̂ − β) ∼ N (0, σ2Q−1).

Proof. That comes β̂ − β ∼ N (0, σ2(X ′X)−1) and X′X
T → Q.

Therefore (X
′X
T )1/2T 1/2(β̂ − β) ∼a N (0, σ2I).

Using Cramer this says that T 1/2(β̂ − β) ∼a N (0, σ2Q−1) (asymptotic distribution).

2. Relaxing assumption I

• Now X are random variables, not fixed numbers. Let us consider stochastic regressors (X are random
regressors), so replace I with I’:

I’ Random variables xt are i.i.d. with E(xtx
′
t) = Σx positive definite.

• Proposition
Under I’, II and III, β̂ is consistent.

Proof. β̂ − β = (X ′X)−1X ′µ = (X
′X
T )−1(X

′µ
T ).

By LLN X′X
T

P−→ ΣX (?).

Since ΣX is positive definite, then by Slutsky theorem (X
′X
T )−1 P−→ Σ−1

X .
Now consider 1

T

∑
xtµt = 1

T

∑
zt. With xt iid. and µt iid., zt is also iid.

Therefore E(xtµt) = ExtEµt = 0. So employing LLN 1
T

∑
zt

P−→ 0. We only have to show consistency of

β̂ − β.

In effect β̂ − β = (X
′X
T )−1(X

′µ
T )

P−→ Σ−1
X · 0 = 0.

So β̂ is consistent.

• Proposition

Under I’, III and µt iid., σ̂2 P−→ σ2.

Proof. σ̂2 = µ̂′µ̂
T−k = µ′MXµ

T−k = T
T−K [ 1

T µ
′µ− X′µ

T (X
′X
T )−1X

′µ
T ]

P−→ 1[σ2 − 0 · Σ−1
X (from ?) · 0] = σ2.

Therefore σ̂2 is consistent.

• Remarks: σ̂2 is an estimator of the volatility. Estimators σ̂2 and β̂ are consistent!

• Theorem
Under I’ , II, III with µt iid., we have
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a) T 1/2(β̂ − β)
D−→ N (0, σ2Σ−1

X )
If in addition we assume that Eµ4

t <∞ then

b) T 1/2(σ̂2 − σ2)
D−→ N (0,Eµ4

t − σ4).

Proof. a) We have that T 1/2(β̂ − β) = (X
′X
T )−1 X

′µ
T 1/2 . We know already that (X

′X
T )−1 → Σ−1

X .

What remains to prove is ( X
′µ

T 1/2 )→ N (0, σ2ΣX).

X ′µ

T 1/2
≡ T−1/2

∑
xtµt = T−1/2

∑
zt → N (0, σ2

∑
X

)

where zt is a vector of random variables.
By Cramer-Wald we need to show that λ′zt converges ∀λ 6= 0.
µt and xt are iid., so zt are iid. and λ′zt are iid. We also know that E(λ′zt) = 0.
By the Lindeberg-:evy CLT 1

T 1/2

∑
λ′zt → N (0, σ2λ′ΣXλ).

Since λ is arbitrary, T−1/2
∑
zt → N (0, σ2ΣX).

b) σ̂2 = 1
T−k

∑
m̂u2

t . Consider σ̃2 = 1
T

∑
µ̂2
t (asymptotically it is the same).

Recall that MX = I −X(X ′X)−1X ′.

T 1/2(σ̃2 − σ2) = T−1/2µ̂′µ̂− T 1/2σ2 =
1

T 1/2
(µ′Mµ− Tσ2) =

= T−1/2
∑

(µ2
t − σ2)− T 1/2(

X ′X

T
)(
X ′X

T
)−1(

X ′µ

T
)→ N (0,Eµ2

t − σ4)

because (X
′X
T )(X

′X
T )−1(X

′µ
T )→ 0.

Next T 1/2(σ̂2 − σ2) = (T − k) 1
T T

1/2(σ̃2 − σ2) + K
T 1/2σ

2 → 1 · T 1/2(σ̃2 − σ2) + 0.

By Cramer T 1/2(σ̂2 − σ2)N (0,Eµ4 − σ4).

3. Remarks

a) To convergence results

• We do not need normality of the errors µt.

• If Eµ4+δ
t for some δ > 0 is finite, then we can drop iid. assumption and use Lyapunov instead

(Lindeberg-Levy CLT).

• If µt are normally distributed T 1/2(σ̂2 − σ2)
D−→ N (0, 2σ4), because Eµ4 = 3σ4.

b) About consistency of β̂

If X′µ
T

a.s.−−→ 0 and X′X
T −MT

a.s−−→ 0,
where Mn is bounded and uniformly positive definite (matrix),

then β̂ exists almost surely for all T sufficiently large and β̂
a.s.−−→ β.

Proof. Recall that earlier we had 1
TX

′X → ΣX fixed and positive definite.

Note that det(X
′X
T )− det(MT )

a.s.−−→ 0,
because <T is bounded and determinant is continuous.
Since {MT } is uniformly positive definite, ∃δ > 0 such that determinant det(X

′X
T ) > δ for sufficiently

alrge T .
Then (X

′X
T )−1 exists alsmo surely and β̂ = (X

′X
T )−1X′Y

T .

So β̂ − β = (X
′X
T )−1X

′µ
T and

β̂ − (β +M−1
T · 0)

a.s.−−→ 0 ⇒ β̂
a.s.−−→ β.

c) Slutsky theorem
Let {Xn}, {Yn} be sequences of scalar/vector/matrix random elements. If Xn converges in distribution
to a random element X, and Yn converges in probability to a constant c, then

a) Xn + Yn
D−→ X + c,

b) YnXn
D−→ cX,

c) Y −1
n Xn

D−→ c−1X provided that c is invertible.
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4. Restricted Least Squares

• Suppose there are m linearly independent constraints on parameters of β in the linear regression: Rβ = r,
where R is m× k and r is m× 1 and m < k, rank(R) = m.

• How do we estimate a regression with constraints? We add a Lagrangian to the loss function.

g(β, λ) = (Y −Xβ)′(Y −Xβ) + 2λ′(Rβ − r)

FOC: g
∂β = −2X ′Y + 2X ′Xβ + 2Rλ′ = 0, ∂g

∂λ = Rβ − r = 0.
It is easier to solve it in the matrix form[

X ′X R′

R 0

] [
β̂
λ

]
=

[
X ′Y
r

]

[
β̂
λ

]
=

[
X ′X R′

R 0

]−1 [
X ′Y
r

]
=

=

[
(X ′X)−1(I −R′(R(X ′X)−1R′)−1R(X ′X)−1 (X ′X)−1R(R(X ′X)−1R′)−1

−(R(X ′X)−1R′)−1R(X ′X)−1 −(R(X ′X)−1R′)−1

] [
X ′Y
r

]
This gives a constrained least sqaures estimator

β̂ = (X ′X)−1(I −R′(R(X ′X)−1R′)−1R(X ′X)−1)X ′Y + (X ′X)−1R′(R(X ′X)−1R′)−1r =

= βOLS − (X ′X)−1R′(R(X ′X)−1R′)−1(RβOLS − r)

If we have constraints in linear regression, we get β̂ = βOLS − correction term.

β̂ = βOLS if βOLS satisfies our constraint RβOLS − r = 0.

There exists also a geometric interpretation – restricted projection!

• Theorem
If we have a constrained regression with:

a) non-stochastic X

b) X ′X non singular

c) µt ∼ N (0, σ2I)

where β solves Rβ = r with rank(R) = m

Rβ̂ − r)′(R(X ′X)−1R′)−1(Rβ̂ − r)/m
T σ̂2/(T − k)

∼ Fm,T−k (�).

Remarks:
β̂ is OLS (not constrained).
F statistic – ratio of chi-squared variables i.e.

If q1 ∼ χ2
n1

and q2 ∼ χ2
n2

, then q1/n1

12/n2
∼ Fn1,n2

(?).

Proof. Note that

[R(β̂ − β)]′[R(X ′X)−1R′]−1[R(β̂ − β)] = µ′X(X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1X ′µ = µ′Qµ

where
Q = X(X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1X ′

is idempotent (show it! Q ·Q = Q), rank(Q) = m.

So we have that µ′Qµ ∼ χ2
m and (T − k) σ̂

2

σ2 = µ′MXµ
σ2 ∼ χ2

T−k. So from (?), we have (�). In addition
MXQ = 0 ⇒ q1 and q2 are independent.
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TUTORIAL 3, 02/03/2012

1. Exercise 1
Establish consistency of β in the following linear model yt = α + βt + µt, t = 1, . . . , T , where Eµt = 0,
Eµ2

t = σ2 and E(µtµs) = 0 ∀t 6= s. Obtain a limiting distribution of T
3
2 (β̂ − β).

Comment:
Because of the specific regressors (time!), we can have the power of 3/2 – we have much faster way of
convergence and consistency during the lecture we had 1/2).

We know that Eβ̂ = β

V arβ̂ = σ2(X ′X)−1 = σ2∑
t(t−t̄)2

, where t̄ = 1
T

∑T
t=1 t.

To show consistecy it is sufficient to show that V arβ̂ → 0 (it follows from Markov’s inequality that checking
the second moment is enough for consistency of estimator).

σ2∑
t(t− t̄)2

=
σ2∑
t2 − T t̄2

=
σ2

1
6T (T + 1)(2T + 1)− 1

4T (T + 1)2
=

12σ2

T (T 2 − 1)
→ 0

Note that
∑
t = T (T+1)

2 and
∑
t2 = T (T+1)(2T+1)

6 . So now we have that

V ar(T 3/2(β̂ − β)) = T 3V ar(β̂ − β) =
12σ2

1− T 2
→ 12σ2

So T 3/2(β̂ − β)
a−→ N (0, 12σ2).

2. ♦ Exercise 2
Consider a regression model yt = β1x

2
t + β2x

2
t + µt, where x1

t and x2
t are centered (zero mean). Let ρ be a

simple correlation of x1
t and x2

t

ρ̂ =
Cor(x1

t , x
2
t )√

V arx1
tV arx

2
t

.

Show that corr(β̂1, β̂2) = −ρ̂. Think what happens if ρ̂ → 1 (then regressors become closer to each other –
they are almost the same variables).

Note that β̂1 and β̂2 are OLS estimators of β1 and β2.
Hint:
Matrix form: Y = β1X1 + β2X2 + µ
Show that β̂1 = (X ′1M2X1)−1X ′1M2Y and similarly β̂2 = (X ′2M1X2)−1X ′2M1Y , whereM1 = I−X1(X1X

′
1)−1X ′1

and M2 = I −X2(X2X
′
2)−1X ′2 (projects off the space of X1 and X2 respectively)
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