Change-making problem

Elżbieta Kukla, Teresa Ponikowska, Michał Kijowski

29 marca 2012

Articles

- Jeffrey Shallit (Department of Computer Science, University of Waterloo, Ontario, Canada, May 26, 2003) What This Country Needs is an 18 cent Piece
- Anna Niewiarowska, Michał Adamaszek, Combinatorics of the change-making problem

Introduction

Coinage system

The sequence

$$
D=\left(e_{1}, e_{2}, \ldots, e_{k}\right), \text { where } 1=e_{1}<e_{2}<\ldots<e_{k}
$$

will be called a currency or coinage system.

For any amount n we denote by:

- opt $\left(n ; e_{1}, e_{2}, \ldots, e_{k}\right)$ - the minimal number of coins needed to pay n
- $\operatorname{grd}\left(n ; e_{1}, e_{2}, \ldots, e_{k}\right)$ - the number of coins used when paying n greedily

Average number of coins needed to give change

Cost

Solving the optimal denomination problem for D denominations up to the limit L means determining the denominations $e_{1}, e_{2}, \ldots, e_{D}$ which minimize

$$
\operatorname{cost}\left(L ; e_{1}, e_{2}, \ldots, e_{D}\right):=\frac{1}{L} \sum_{0 \leqslant i<L} o p t\left(i ; e_{1}, e_{2}, \ldots, e_{D}\right)
$$

Optimal denominations

Optimal denominations of size D and their costs

D	$\left(e_{1}, \ldots, e_{D}\right)$	$\operatorname{cost}\left(100 ; e_{1}, \ldots, e_{D}\right)$
1	(1)	49.5
2	$(1,10),(1,11)$	9
3	$(1,12,19)$	5.15
4	$(1,5,18,25),(1,5,18,29)$	3.89
5	$(1,5,16,23,33)$	3.29
6	$(1,4,6,21,0,37),(1,5,8,20,31,33)$	2.92
7	$(1,4,9,11,26,38,44)$	2.65

USA

Denominations in USA

$\left(e_{1}, \ldots, e_{D}\right)$	$\operatorname{cost}\left(100 ; e_{1}, \ldots, e_{D}\right)$
$(1,5,10,25)$	4.7
$(1,5,18,25),(1,5,18,29)$	3.89
$(1,5,10,25,32)$	3.46
$(1,5,10,25,50)$	4.2
$(1,5,10,18,25,50)$	3.18

Greedy methods

We have a given number N to be represented as a nonnegative integer linear combination of denominations $e_{1}<e_{2}<\ldots<e_{D}$.

Greedy algorithm

(1) Take as many copies a_{D} of the largest denomination e_{D} as possible, so that $a_{D} e_{D} \leqslant N$.
(2) Then set $N:=N-a_{D} e_{D}$ and continue the procedure with the remaining smaller denominations.

Computational complexity of the problems

Problems

(1) Suppose we are given an amount of change to make, say N, and a system of denominations, $1=e_{1}<e_{2}<\ldots<e_{D}$. How easy is it to compute $\operatorname{opt}\left(N ; e_{1}, e_{2}, \ldots, e_{D}\right)$ or find an optimal representation $N=\sum_{1 \leqslant i \leqslant D} a_{i} e_{i}$ i.e. one which minimizes $\sum_{1 \leqslant i \leqslant D} a_{i}$. NP-hard problem
(2) Suppose we are given N and a system of denominations. How easy is it to determine if the greedy representation for N is actually optimal? co-NP-complete problem

Computational complexity of the problems

Problems

(3) Suppose we are given a system of denomination. How easy is it to decide whether the greedy algorithm always produces an optimal representation, for all values of N ? This problem can be solved efficiently! (Pearson Test)
(4) Frobenius problem

We are given a set of D denominations $e_{1}<e_{2}<\ldots<e_{D}$ with $\operatorname{gcd}\left(e_{1}, e_{2}, \ldots, e_{D}\right)=1$ and we want to find the largest integer N which cannot be expressed in the form $\sum_{1 \leqslant i \leqslant D} a_{i} e_{i}$ with the a_{i} non-negative integers.
NP-hard problem

